Created
July 7, 2024 17:30
-
-
Save thomasahle/08c2d23c9b82ad6e2ba18fa2bd5742bb to your computer and use it in GitHub Desktop.
Randomly Initialized MLPs with Different Activation Functions
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import math | |
from torch import nn | |
import torch.nn.functional as F | |
import matplotlib.pyplot as plt | |
import matplotlib.cm as cm | |
import matplotlib.colors as mcolors | |
import numpy as np | |
import seaborn as sns | |
device = "cpu" | |
width = 1000 | |
depth = 100 | |
iterations = 3 | |
title = "Randomly Initialized MLPs with Different Activation Functions" | |
def gelu2(x): | |
Phi = 0.5 * (1 + torch.erf(x / math.sqrt(2))) | |
phi = torch.exp(-0.5 * x**2) / math.sqrt(2 * torch.pi) | |
return x * Phi - phi | |
activation_functions = { | |
"Identity": lambda x: x, | |
"ReLU": lambda x: F.relu(x) * nn.init.calculate_gain("relu"), | |
"Tanh": lambda x: torch.tanh(x) * nn.init.calculate_gain("tanh"), | |
"GeLU": lambda x: F.gelu(x) * 1.70093, | |
"SiLU/Swish": lambda x: F.silu(x) * 1.78719, | |
"Mean 0 GeLU: x Φ(x) − ϕ(x)": lambda x: gelu2(x) * 1.533530, | |
# "Sine": lambda x: torch.sin(x) * 1.19267, | |
"SELU": lambda x: F.selu(x) * nn.init.calculate_gain("selu"), | |
"ELU": lambda x: F.elu(x) * 1.269457, | |
"Leaky ReLU": lambda x: F.leaky_relu(x) * nn.init.calculate_gain("leaky_relu"), | |
} | |
class MLP(nn.Module): | |
def __init__(self, width, depth, act_func): | |
super().__init__() | |
self.layer0 = nn.Linear(5, width, bias=False) | |
self.layers = nn.ModuleList( | |
[nn.Linear(width, width, bias=False) for _ in range(depth)] | |
) | |
self.act_func = act_func | |
for p in self.layers.parameters(): | |
p.data[:] = torch.randn_like(p.data) / (width**0.5) | |
def forward(self, x): | |
norms = [] | |
angles = [] | |
x = self.layer0(x) | |
norms.append(x.norm(dim=1).mean().item()) | |
x_normalized = x / x.norm(dim=1, keepdim=True) | |
angles.append((x_normalized[0] @ x_normalized[1]).item()) | |
for layer in self.layers: | |
x = self.act_func(x) | |
x = layer(x) | |
norms.append(x.norm(dim=1).mean().item()) | |
x_normalized = x / x.norm(dim=1, keepdim=True) | |
angles.append((x_normalized[0] @ x_normalized[1]).item()) | |
return x, norms, angles | |
sns.set(style="whitegrid") | |
fig, axes = plt.subplots(3, 3, figsize=(16, 10)) | |
fig.suptitle(title) | |
axes = axes.flatten() | |
def add_variation_to_color(color, variation=0.1): | |
"""Adds a little randomness to a given base color.""" | |
color = np.array(mcolors.to_rgb(color)) | |
noise = np.random.uniform(-variation, variation, color.shape) | |
new_color = np.clip(color + noise, 0, 1) | |
return new_color | |
oranges = [add_variation_to_color("orange") for _ in range(iterations)] | |
blues = [add_variation_to_color("tab:blue") for _ in range(iterations)] | |
data = torch.randn(iterations, 2, 5, device=device) | |
data /= data.norm(dim=2, keepdim=True) | |
net = MLP(width=width, depth=depth, act_func=None).to(device) | |
for i, (act_name, act_func) in enumerate(activation_functions.items()): | |
print(i, act_name) | |
net.act_func = act_func | |
all_norms = [] | |
all_angles = [] | |
for j in range(iterations): | |
with torch.no_grad(): | |
outputs, norms, angles = net(data[j]) | |
all_norms.append(norms) | |
all_angles.append(angles) | |
ax = axes[i] | |
# Plotting the angles | |
ax.set_title(f"{act_name}") | |
ax.set_xlabel("Layer") | |
ax.set_ylabel("Angle", color="orange") | |
for j, angles in enumerate(all_angles): | |
ax.plot( | |
angles, | |
color=oranges[j], | |
label=f"Angle Iteration {j + 1}", | |
) | |
# Plotting the norms | |
ax2 = ax.twinx() | |
ax2.set_ylabel("Norm", color="tab:blue") | |
for j, norms in enumerate(all_norms): | |
ax2.plot(norms, color=blues[j], label=f"Norm Iteration {j + 1}") | |
# Setting grid and legends | |
ax.grid(True, axis="y") | |
ax.xaxis.grid(False) | |
ax2.grid(False) | |
for ax in [ax, ax2]: | |
ax.spines["right"].set_visible(False) | |
ax.spines["left"].set_visible(False) | |
ax.spines["top"].set_visible(False) | |
plt.tight_layout() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment