Created
April 28, 2023 19:09
-
-
Save thomasahle/0a53cecd24403b8c3f3634249f4da725 to your computer and use it in GitHub Desktop.
Solution to https://math.stackexchange.com/questions/4687904
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
def quartic(y, n1, n2, ip): | |
"""A solution to the equation | |
n1 x2 + n2 (1 - x2) + 2 ip sqrt(x2 (1 - x2)) == y | |
""" | |
assert n2 <= y <= n1 | |
d = np.sign(ip) * (ip**4 + ip**2 * (n1 - y) * (y - n2)) ** 0.5 | |
x2 = (2 * ip**2 + (n1 - n2) * (y - n2) - 2 * d) / (4 * ip**2 + (n1 - n2) ** 2) | |
assert np.isclose(n1 * x2 + n2 * (1 - x2) + 2 * ip * (x2 * (1 - x2)) ** 0.5, y) | |
return x2 | |
def optimal_rotation(X): | |
colnorm2s = np.einsum("ij,ij->j", X, X) | |
target_norm = np.mean(colnorm2s) | |
R = np.eye(d) | |
X = X.copy() | |
for i in range(d - 1): | |
# Find indices to rotate | |
lo, hi = np.argmin(colnorm2s), np.argmax(colnorm2s) | |
# Compute optimal rotation | |
n1, n2, ip = colnorm2s[hi], colnorm2s[lo], X[:, hi] @ X[:, lo] | |
cos2 = quartic(target_norm, n1, n2, ip) | |
cos, sin = cos2**0.5, (1 - cos2) ** 0.5 | |
rot = np.array([[cos, -sin], [sin, cos]]) | |
# Update R and X (so we can compute the correct inner next time) | |
X[:, (hi, lo)] = X[:, (hi, lo)] @ rot | |
R[:, (hi, lo)] = R[:, (hi, lo)] @ rot | |
colnorm2s[hi] = target_norm | |
colnorm2s[lo] = n2 * cos2 + n1 * (1 - cos2) - 2 * ip * cos * sin | |
# Test that the new norms match what we expected | |
new_n1, new_n2 = np.einsum("ij,ij->j", X[:, (hi, lo)], X[:, (hi, lo)]) | |
assert np.isclose(new_n1, target_norm) | |
assert np.isclose(new_n2, colnorm2s[lo]) | |
return R | |
# Example usage: | |
n, d = 100, 13 | |
X = np.random.randn(n, d) | |
R = optimal_rotation(X) | |
assert np.allclose(R @ R.T, np.eye(d)), "R not a rotation" | |
old_norms = np.linalg.norm(X, axis=0) | |
new_norms = np.linalg.norm(X @ R, axis=0) | |
# print(f"{old_norms=}") | |
print(f"{old_norms.max()=}") | |
# print(f"{new_norms=}") | |
print(f"{new_norms.max()=}") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment