Created
January 23, 2025 11:56
-
-
Save thomasahle/9e7e6226751ed01809208ed86fabf07b to your computer and use it in GitHub Desktop.
generated.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
1: def _generated_forward(i:int, k:int, _var_5305017088:torch.Tensor, _var_5305017136:torch.Tensor, _var_5305023376:torch.Tensor) -> tuple[torch.Tensor]: | |
2: sum_ = 0 # (i, k) | |
3: # Product of 2 tensors | |
4: var_x = _var_5305023376 # (i, j) | |
5: var_w = _var_5305017088 # (j, k) | |
6: # var_x: (i, j) | |
7: # var_w: (j, k) | |
8: prod_ = ctg.array_contract( | |
9: arrays=[var_x, var_w], | |
10: inputs=[('i', 'j'), ('j', 'k')], | |
11: output=('i', 'k'), | |
12: optimize='auto' | |
13: ) | |
14: sum_ += prod_ | |
15: var_b = _var_5305017136 # (i, k) | |
16: sum_ += var_b | |
17: fn_relu = torch.relu(sum_) # (i, k) | |
18: # Product of 4 tensors | |
19: fn_gt0 = (sum_ >= 0).float() # (i_0, k_0) | |
20: indices = torch.arange(k, dtype=torch.int64) | |
21: values = torch.ones(k, dtype=torch.float32) | |
22: delta_ = torch.sparse_csr_tensor( | |
23: crow_indices=torch.arange(k + 1, dtype=torch.int64), | |
24: col_indices=indices, | |
25: values=values, | |
26: size=(k, k, k) | |
27: ) | |
28: indices = torch.arange(i, dtype=torch.int64) | |
29: values = torch.ones(i, dtype=torch.float32) | |
30: delta__1 = torch.sparse_csr_tensor( | |
31: crow_indices=torch.arange(i + 1, dtype=torch.int64), | |
32: col_indices=indices, | |
33: values=values, | |
34: size=(i, i, i) | |
35: ) | |
36: # fn_gt0: (i_0, k_0) | |
37: # var_w: (j, k_1) | |
38: # delta_: (k, k_0, k_1) | |
39: # delta__1: (i_, i, i_0) | |
40: prod__1 = ctg.array_contract( | |
41: arrays=[fn_gt0, var_w, delta_, delta__1], | |
42: inputs=[('i_0', 'k_0'), ('j', 'k_1'), ('k', 'k_0', 'k_1'), ('i_', 'i', 'i_0')], | |
43: output=('j', 'k', 'i_', 'i'), | |
44: optimize='auto' | |
45: ) | |
46: return fn_relu, prod__1 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment