Created
January 4, 2025 20:23
-
-
Save thomasahle/bfdcf8e9fc06d7c88d761d3e99f51049 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
# Parameters | |
d = 5 | |
n = 5 | |
maxP = 10 | |
n_samples = 10000 | |
def formula_p1(n, d): | |
return d*(1-1/d)**n | |
def formula_p2(n, d): | |
return 1/3*d*(-((-1+d)*((-2+d)/d)**n)+(2+d)*((-1+d**2)/(d*(2+d)))**n) | |
def formula_p2_v2(n, d): | |
mat = np.array([ | |
[ 1-2/d+2/(d*(d+2)), 1/(d*(d+2)) ], | |
[ 2/(d*(d+2)), 1-2/d+1/(d*(d+2))] | |
]) | |
val = np.array([d, d**2]) | |
for _ in range(n): | |
val = mat @ val | |
return val[0] | |
def formula_p2_v3(n, d): | |
mat = np.array([ | |
[ 1-2/d+1/(d*(d+2)), 1/(d*(d+2)), 1/(d*(d+2)) ], | |
[ 1/(d*(d+2)), 1-2/d+1/(d*(d+2)), 1/(d*(d+2))], | |
[0, 0, 1-1/d] | |
]) | |
val = np.array([d, d**2, d]) | |
for _ in range(n): | |
val = mat @ val | |
return val[0] | |
# Identity matrix | |
ii = np.eye(d) | |
# Initialize accumulators for averages | |
traces1_acc = np.zeros(maxP) | |
traces2_acc = np.zeros(maxP) | |
singular_sum_acc = np.zeros(maxP) | |
# Perform averaging over multiple random samples | |
for _ in range(n_samples): | |
# Generate isotropic normalized random vectors | |
isotropic = np.array([v / np.linalg.norm(v) for v in np.random.normal(size=(n, d))]) | |
# Compute A | |
A_matrices = [ii - np.outer(v, v) for v in isotropic] | |
A = np.linalg.multi_dot(A_matrices) | |
B = A @ A.T | |
# Compute powers of A | |
A_powers = [A] | |
B_powers = [B] | |
for _ in range(1, maxP): | |
A_powers.append(A_powers[-1] @ A) | |
B_powers.append(B_powers[-1] @ B) | |
# Accumulate trace values | |
traces1_acc += np.array([np.trace(p) for p in A_powers]) | |
traces2_acc += np.array([np.trace(p) for p in B_powers]) | |
# Accumulate singular value calculations | |
singular_values = np.linalg.svd(A, compute_uv=False) | |
singular_sum_acc += np.array([np.sum(singular_values**(2 * p)) for p in range(1, maxP + 1)]) | |
# Compute averages | |
traces1_avg = traces1_acc / n_samples | |
traces2_avg = traces2_acc / n_samples | |
singular_sum_avg = singular_sum_acc / n_samples | |
print(traces1_avg[:2]) | |
print(traces2_avg[:2]) | |
print(singular_sum_avg[:2]) | |
print(formula_p1(n, d)) | |
print(formula_p2(n, d)) | |
print(formula_p2_v2(n, d)) | |
print(formula_p2_v3(n, d)) | |
# Trace plot | |
plt.plot(range(1, maxP + 1), traces1_avg, label="Avg Tr(A^p)", marker="o") | |
plt.plot(range(1, maxP + 1), traces2_avg, label="Avg Tr((AA^T)^p)", color="r", marker="+") | |
plt.plot(range(1, maxP + 1), singular_sum_avg, label="Avg Sum of Singular Values^(2p)", color="b") | |
plt.fill_between(range(1, maxP + 1), 0, traces1_avg, alpha=0.3) | |
plt.xlabel("p") | |
plt.ylabel("Average Trace") | |
plt.title(f"Average over {n_samples} samples, {d=}") | |
plt.legend() | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment