Created
April 13, 2023 19:07
-
-
Save thomasahle/edf90cad1c074c0f589ae46be758485d to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
import sklearn.metrics | |
def upper(xs, ys, convex=True): | |
i = np.argsort(xs) | |
ys = ys[i] | |
xs = xs[i] | |
i0 = np.argmax(ys) | |
xs1 = [xs[i0]] | |
ys1 = [ys[i0]] | |
for x, y in zip(xs[i0 + 1 :], ys[i0 + 1 :]): | |
# See if we can get rid of some previous points | |
while (convex and len(ys1) >= 2 and (ys1[-2] - y) * (x - xs1[-1]) >= (ys1[-1] - y) * (x - xs1[-2])) or ( | |
not convex and y >= ys1[-1] | |
): | |
ys1.pop() | |
xs1.pop() | |
xs1.append(x) | |
ys1.append(y) | |
return xs1, ys1 | |
def auc(xs, ys, cutoff=1 / 2): | |
ys.append(0) | |
xs.append(1) | |
x0 = cutoff | |
y0 = np.interp(x0, xs, ys) | |
i = np.searchsorted(xs, x0) | |
return sklearn.metrics.auc([x0] + xs[i:], [y0] + ys[i:]) | |
df = pd.read_csv("out.csv") | |
datasets = np.unique(df["dataset"]) | |
algs = np.unique(df["algorithm"]) | |
scores = {alg: [] for alg in algs} | |
for ds in datasets: | |
for alg in algs: | |
x = df[(df["algorithm"] == alg) & (df["dataset"] == ds)] | |
xs, ys = x["k-nn"].to_numpy(), x["qps"].to_numpy() | |
if xs.size == 0: | |
print(f"No data for {alg}, {ds}") | |
scores[alg].append(None) | |
continue | |
xs, ys = upper(xs, ys) | |
scores[alg].append(auc(xs, ys)) | |
# Normalize by best score | |
if all(lst[-1] is None for lst in scores.values()): | |
continue | |
best = max(lst[-1] for lst in scores.values() if lst[-1] is not None) | |
for alg in algs: | |
if scores[alg][-1] is not None: | |
scores[alg][-1] /= best | |
values = [[v for v in lst if v is not None] for lst in scores.values()] | |
mean_algs_values = sorted((-np.mean(vals), alg, vals) for alg, vals in zip(algs, values)) | |
_, algs, values = zip(*mean_algs_values) | |
# Create a box plot | |
fig, ax = plt.subplots() | |
print(values) | |
ax.boxplot(values) | |
# Set the x-axis tick labels to the algorithm names | |
ax.set_xticklabels(algs, rotation=90) | |
# Add labels and title | |
ax.set_xlabel("Algorithms") | |
ax.set_ylabel("Scores") | |
ax.set_title("Box Plot Summary Chart Comparing Algorithms") | |
# Show the plot | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment