Skip to content

Instantly share code, notes, and snippets.

@thomasahle
Created May 30, 2024 17:05
Show Gist options
  • Save thomasahle/fda886c5c62930087c1f8678d2ebf06f to your computer and use it in GitHub Desktop.
Save thomasahle/fda886c5c62930087c1f8678d2ebf06f to your computer and use it in GitHub Desktop.
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
import tqdm
# Generate random dataset
np.random.seed(0)
x = np.linspace(-1, 1, 300)
y = np.sin(20 * x) + 2 * (x + x**2) + np.random.normal(0, 0.2, x.shape)
x_tensor = torch.tensor(x, dtype=torch.float32).view(-1, 1)
y_tensor = torch.tensor(y, dtype=torch.float32).view(-1, 1)
class GatedSineLayer(nn.Module):
def __init__(self, in_features, out_features):
super(GatedSineLayer, self).__init__()
self.fc1 = nn.Linear(in_features, out_features)
self.fc2 = nn.Linear(in_features, out_features)
def forward(self, x):
return torch.sin(self.fc1(x)) * self.fc2(x)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = GatedSineLayer(1, 100)
self.fc2 = GatedSineLayer(100, 100)
self.fc3 = GatedSineLayer(100, 100)
self.fc4 = GatedSineLayer(100, 1)
def forward(self, x):
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
x = self.fc4(x)
return x
# Instantiate the network, define the loss function and the optimizer
net = Net()
criterion = nn.MSELoss()
optimizer = optim.Adam(net.parameters(), lr=0.01)
# Training parameters
epochs = 500
interval = 10 # Save the model output every `interval` epochs
# Prepare the figure for plotting
fig, ax = plt.subplots()
fig.patch.set_facecolor("black")
ax.set_facecolor("black")
ax.spines["bottom"].set_color("white")
ax.spines["top"].set_color("white")
ax.spines["left"].set_color("white")
ax.spines["right"].set_color("white")
ax.tick_params(axis="x", colors="white")
ax.tick_params(axis="y", colors="white")
ax.yaxis.label.set_color("white")
ax.xaxis.label.set_color("white")
ax.title.set_color("white")
# Prepare the figure for plotting
ax.plot(x, y, "r.")
ax.set_ylim(-2, 3)
# Training loop
frames = []
for epoch in tqdm.tqdm(range(epochs)):
net.train()
optimizer.zero_grad()
outputs = net(x_tensor)
loss = criterion(outputs, y_tensor)
loss.backward()
optimizer.step()
if epoch % interval == 0:
net.eval()
with torch.no_grad():
pred_y = net(x_tensor).numpy()
frame = ax.plot(x, pred_y, "y-")
title = ax.text(
0.5,
1.05,
f"Epoch {epoch}, Loss: {loss.item():.4f}",
size=plt.rcParams["axes.titlesize"],
ha="center",
transform=ax.transAxes,
color="white",
)
frames.append(frame + [title])
ani = animation.ArtistAnimation(fig, frames, interval=50, blit=True)
ani.save("fit_animation.mp4", writer="ffmpeg")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment