Created
October 28, 2020 13:48
-
-
Save thomasweng15/0e198d25693effbc2f5cdee84b2274cf to your computer and use it in GitHub Desktop.
modified resnet
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch.nn as nn | |
import math | |
import torch.utils.model_zoo as model_zoo | |
import numpy as np | |
__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101', | |
'resnet152'] | |
model_urls = { | |
'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth', | |
'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth', | |
'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', | |
'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', | |
'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', | |
} | |
def conv3x3(in_planes, out_planes, stride=1, dilation=1): | |
"3x3 convolution with padding" | |
kernel_size = np.asarray((3, 3)) | |
# Compute the size of the upsampled filter with | |
# a specified dilation rate. | |
upsampled_kernel_size = (kernel_size - 1) * (dilation - 1) + kernel_size | |
# Determine the padding that is necessary for full padding, | |
# meaning the output spatial size is equal to input spatial size | |
full_padding = (upsampled_kernel_size - 1) // 2 | |
# Conv2d doesn't accept numpy arrays as arguments | |
full_padding, kernel_size = tuple(full_padding), tuple(kernel_size) | |
return nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, | |
padding=full_padding, dilation=dilation, bias=False) | |
class BasicBlock(nn.Module): | |
expansion = 1 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1): | |
super(BasicBlock, self).__init__() | |
self.conv1 = conv3x3(inplanes, planes, stride, dilation=dilation) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.relu = nn.ReLU(inplace=True) | |
self.conv2 = conv3x3(planes, planes, dilation=dilation) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, downsample=None, dilation=1): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = nn.BatchNorm2d(planes) | |
self.conv2 = conv3x3(planes, planes, stride=stride, dilation=dilation) | |
#self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, | |
# padding=1, bias=False) | |
self.bn2 = nn.BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | |
self.bn3 = nn.BatchNorm2d(planes * 4) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNet(nn.Module): | |
def __init__(self, | |
block, | |
layers, | |
num_classes=1000, | |
fully_conv=False, | |
remove_avg_pool_layer=False, | |
output_stride=32, | |
additional_blocks=0, | |
multi_grid=(1,1,1) ): | |
# Add additional variables to track | |
# output stride. Necessary to achieve | |
# specified output stride. | |
self.output_stride = output_stride | |
self.current_stride = 4 | |
self.current_dilation = 1 | |
self.remove_avg_pool_layer = remove_avg_pool_layer | |
self.inplanes = 64 | |
self.fully_conv = fully_conv | |
super(ResNet, self).__init__() | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, | |
bias=False) | |
self.bn1 = nn.BatchNorm2d(64) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=2, multi_grid=multi_grid) | |
self.additional_blocks = additional_blocks | |
if additional_blocks == 1: | |
self.layer5 = self._make_layer(block, 512, layers[3], stride=2, multi_grid=multi_grid) | |
if additional_blocks == 2: | |
self.layer5 = self._make_layer(block, 512, layers[3], stride=2, multi_grid=multi_grid) | |
self.layer6 = self._make_layer(block, 512, layers[3], stride=2, multi_grid=multi_grid) | |
if additional_blocks == 3: | |
self.layer5 = self._make_layer(block, 512, layers[3], stride=2, multi_grid=multi_grid) | |
self.layer6 = self._make_layer(block, 512, layers[3], stride=2, multi_grid=multi_grid) | |
self.layer7 = self._make_layer(block, 512, layers[3], stride=2, multi_grid=multi_grid) | |
self.avgpool = nn.AvgPool2d(7) | |
self.fc = nn.Linear(512 * block.expansion, num_classes) | |
if self.fully_conv: | |
self.avgpool = nn.AvgPool2d(7, padding=3, stride=1) | |
# In the latest unstable torch 4.0 the tensor.copy_ | |
# method was changed and doesn't work as it used to be | |
#self.fc = nn.Conv2d(512 * block.expansion, num_classes, 1) | |
for m in self.modules(): | |
if isinstance(m, nn.Conv2d): | |
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels | |
m.weight.data.normal_(0, math.sqrt(2. / n)) | |
elif isinstance(m, nn.BatchNorm2d): | |
m.weight.data.fill_(1) | |
m.bias.data.zero_() | |
def _make_layer(self, | |
block, | |
planes, | |
blocks, | |
stride=1, | |
multi_grid=None): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
# Check if we already achieved desired output stride. | |
if self.current_stride == self.output_stride: | |
# If so, replace subsampling with a dilation to preserve | |
# current spatial resolution. | |
self.current_dilation = self.current_dilation * stride | |
stride = 1 | |
else: | |
# If not, perform subsampling and update current | |
# new output stride. | |
self.current_stride = self.current_stride * stride | |
# We don't dilate 1x1 convolution. | |
downsample = nn.Sequential( | |
nn.Conv2d(self.inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
nn.BatchNorm2d(planes * block.expansion), | |
) | |
layers = [] | |
dilation = multi_grid[0] * self.current_dilation if multi_grid else self.current_dilation | |
layers.append(block(self.inplanes, planes, stride, downsample, dilation=dilation)) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
dilation = multi_grid[i] * self.current_dilation if multi_grid else self.current_dilation | |
layers.append(block(self.inplanes, planes, dilation=dilation)) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.conv1(x) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
x = self.layer1(x) | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
if self.additional_blocks == 1: | |
x = self.layer5(x) | |
if self.additional_blocks == 2: | |
x = self.layer5(x) | |
x = self.layer6(x) | |
if self.additional_blocks == 3: | |
x = self.layer5(x) | |
x = self.layer6(x) | |
x = self.layer7(x) | |
if not self.remove_avg_pool_layer: | |
x = self.avgpool(x) | |
if not self.fully_conv: | |
x = x.view(x.size(0), -1) | |
x = self.fc(x) | |
return x | |
def resnet18(pretrained=False, **kwargs): | |
"""Constructs a ResNet-18 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet18'])) | |
return model | |
def resnet34(pretrained=False, **kwargs): | |
"""Constructs a ResNet-34 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet34'])) | |
return model | |
def resnet50(pretrained=False, **kwargs): | |
"""Constructs a ResNet-50 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 4, 6, 3], **kwargs) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet50'])) | |
return model | |
def resnet101(pretrained=False, **kwargs): | |
"""Constructs a ResNet-101 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 4, 23, 3], **kwargs) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet101'])) | |
return model | |
def resnet152(pretrained=False, **kwargs): | |
"""Constructs a ResNet-152 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet(Bottleneck, [3, 8, 36, 3], **kwargs) | |
if pretrained: | |
model.load_state_dict(model_zoo.load_url(model_urls['resnet152'])) | |
return model |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment