Created
October 3, 2017 11:48
-
-
Save thomwolf/f58def98e8a61117f7214492c5d72b34 to your computer and use it in GitHub Desktop.
A simple pyTorch Dataset class
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class DeepMojiDataset(Dataset): | |
""" A simple Dataset class. | |
# Arguments: | |
X_in: Inputs of the given dataset. | |
y_in: Outputs of the given dataset. | |
# __getitem__ output: | |
(torch.LongTensor, torch.LongTensor) | |
""" | |
def __init__(self, X_in, y_in): | |
# Check if we have Torch.LongTensor inputs (assume Numpy array otherwise) | |
if not isinstance(X_in, torch.LongTensor): | |
X_in = torch.from_numpy(X_in.astype('int64')).long() | |
if not isinstance(y_in, torch.LongTensor): | |
y_in = torch.from_numpy(y_in.astype('int64')).long() | |
self.X_in = torch.split(X_in, 1, dim=0) | |
self.y_in = torch.split(y_in, 1, dim=0) | |
def __len__(self): | |
return len(self.X_in) | |
def __getitem__(self, idx): | |
return self.X_in[idx].squeeze(), self.y_in[idx].squeeze() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment