Created
November 24, 2024 18:14
-
-
Save thoughtfulbloke/4c87c97db569f821eb134eb876e79c99 to your computer and use it in GitHub Desktop.
Day 25 2024 #30daymapchallenge code
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(rvest) | |
library(dplyr) | |
library(RcppRoll) | |
library(tidygeocoder) | |
library(maps) | |
library(mapdata) | |
library(ggplot2) | |
library(viridis) | |
library(patchwork) | |
library(ggtext) | |
#Timeseries of UN Climate Change COP meetings and global annual temperature. | |
# I worked out from the later distribution of timeCOP data a good discrete distribution | |
# is 20 steps, using 13 of those steps over the 30 COP entries. So I made it easy | |
# for myself and made the title and subtitle multiples of 30 characters then added | |
#colour info for ggtext element_markdown | |
twentycols <- viridis_pal(alpha = 1, begin = 0, option="A", end=0.92, direction = 1)(20) | |
sbtitle <- paste0("<span style='color:",twentycols[1],"'>G</span>", | |
"<span style='color:",twentycols[2],"'>lo</span>", | |
"<span style='color:",twentycols[3],"'>b</span>", | |
"<span style='color:",twentycols[4],"'>al w</span>", | |
"<span style='color:",twentycols[5],"'>a</span>", | |
"<span style='color:",twentycols[6],"'>rm</span>", | |
"<span style='color:",twentycols[7],"'>ing (<SUP>o</SUP>C)</span>", | |
"<span style='color:",twentycols[9],"'> s</span>", | |
"<span style='color:",twentycols[11],"'>inc</span>", | |
"<span style='color:",twentycols[12],"'>e</span>", | |
"<span style='color:",twentycols[13],"'> C</span>", | |
"<span style='color:",twentycols[15],"'>OP</span>", | |
"<span style='color:",twentycols[20],"'>1</span>") | |
mdtitle <- paste0("<span style='color:",twentycols[1],"'>He</span>", | |
"<span style='color:",twentycols[2],"'>atin</span>", | |
"<span style='color:",twentycols[3],"'>g </span>", | |
"<span style='color:",twentycols[4],"'>up: U.N.</span>", | |
"<span style='color:",twentycols[5],"'> C</span>", | |
"<span style='color:",twentycols[6],"'>lima</span>", | |
"<span style='color:",twentycols[7],"'>te Change Confer</span>", | |
"<span style='color:",twentycols[9],"'>ence</span>", | |
"<span style='color:",twentycols[11],"'>s and </span>", | |
"<span style='color:",twentycols[12],"'>gl</span>", | |
"<span style='color:",twentycols[13],"'>obal</span>", | |
"<span style='color:",twentycols[15],"'> tem</span>", | |
"<span style='color:",twentycols[20],"'>p.</span>") | |
# see if the prepared timeseries of COP meetings has already been processed | |
if(!file.exists("timecop.csv")){ | |
# https://en.wikipedia.org/wiki/United_Nations_Climate_Change_Conference | |
# read page and pull out meetings. | |
page = read_html("https://en.wikipedia.org/wiki/United_Nations_Climate_Change_Conference") | |
tableOnPage = html_node(page, ".wikitable") | |
summits = html_table(tableOnPage, fill = TRUE) | |
unclimate <- summits[grep("COP",summits$Name),] | |
# look up COP locations in OpenStreetMap to get latitude and longitude | |
cccun <- geocode(unclimate,city=Location, country=Country, | |
method = "osm", | |
limit=1, full_results = TRUE) | |
# https://www.ncei.noaa.gov/products/land-based-station/noaa-global-temp | |
# https://www.ncei.noaa.gov/data/noaa-global-surface-temperature/v6/access/timeseries/aravg.mon.land_ocean.90S.90N.v6.0.0.202410.asc | |
# pull the ascii file of world monthly average land & sea temperature directly into R | |
monthly_global_temp <- read.table("https://www.ncei.noaa.gov/data/noaa-global-surface-temperature/v6/access/timeseries/aravg.mon.land_ocean.90S.90N.v6.0.0.202410.asc") | |
# getting the rolling average of monthly averages is close enough | |
# to the annual average at this level of resolution, and lets us do | |
# year to October to include 2024 | |
# then join all the data on the basis of years | |
combo <- monthly_global_temp |> | |
mutate(rolling_annual_temp = roll_meanr(monthly_global_temp$V3, n = 12)) |> | |
filter(V2 == 10) |> | |
select(Year=V1,rolling_annual_temp) |> | |
inner_join(cccun, by="Year") |> | |
mutate(changeT=rolling_annual_temp-rolling_annual_temp[1], | |
nextlat=lead(lat), | |
nextlong = lead(long), | |
nextYear = lead(Year), | |
midtemp = (changeT + lead(changeT))/2, | |
nextTemp = lead(changeT)) |> | |
select(Year, Name, Location, Country, lat,long, changeT, | |
nextlat, nextlong, nextYear, nextTemp, midtemp) | |
write.csv(combo, file = "timecop.csv", row.names=FALSE) | |
} | |
# load the cached copy of data that must exist by now | |
timeCOP <- read.csv("timecop.csv") | |
# basic background map | |
world <- map_data("world") | |
plot1 <- ggplot(world, aes(long, lat)) + | |
geom_polygon(aes(group = group), | |
fill="#EEE",colour="#EEE") + | |
geom_curve(data=timeCOP[1:29,],aes(xend=nextlong,yend=nextlat, colour=midtemp)) + | |
geom_point(data=timeCOP, aes(colour=changeT)) + | |
scale_colour_viridis_c(option="A", end=0.92) + | |
theme_void() + | |
coord_fixed(xlim=c(-90,140), | |
ylim=c(-45,70)) + | |
theme(legend.position = "none") | |
plot2 <- ggplot(timeCOP, aes(x=Year, y=changeT)) + | |
annotate("text", x=1995, y=0.7, hjust=0, colour="#BBB", | |
label="Warming in global annual average degrees C since COP1 (1995)") + | |
geom_point(aes(colour=changeT)) + | |
geom_segment(data=timeCOP[1:29,],aes(xend=nextYear,yend=nextTemp, colour=midtemp)) + | |
scale_colour_viridis_c(option="A", end=0.92) + | |
theme_minimal() + | |
theme(legend.position = "none", | |
panel.grid.major.x = element_blank(), | |
panel.grid.minor.x = element_blank(), | |
panel.grid.minor.y = element_blank(), | |
axis.ticks.x.bottom = element_line(colour="#BBB", linewidth=0.5), | |
axis.ticks.length.x = unit(12, "pt"), | |
axis.title.x = element_blank(), | |
axis.title.y = element_blank(), | |
axis.text.x.bottom = element_text(margin=margin(6,6,6,6)), | |
axis.text.y.left = element_text(margin=margin(6,6,6,6))) + | |
scale_y_continuous(breaks=c(0,.5)) + scale_x_continuous(breaks=c(2000,2020)) | |
design <- "A | |
A | |
A | |
B" | |
twoplots <- plot1 + plot2 + | |
plot_layout(design = design) + | |
plot_annotation(title=mdtitle, | |
subtitle=sbtitle, | |
theme = theme(plot.subtitle = element_markdown(), | |
plot.title = element_markdown()), | |
caption = "COPs: Wikipedia, Coordinations: OSM, Temperature: NCEI/NOAA") | |
ggsave(filename="~/Desktop/heat.jpg", plot=twoplots, | |
height=600, width=900, dpi=150, units="px") | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment