Skip to content

Instantly share code, notes, and snippets.

@thoughtfulbloke
Created May 6, 2022 01:49
Show Gist options
  • Save thoughtfulbloke/957a5046ad5ceae4fdcbf8492d3b4ccd to your computer and use it in GitHub Desktop.
Save thoughtfulbloke/957a5046ad5ceae4fdcbf8492d3b4ccd to your computer and use it in GitHub Desktop.
Population Data from Infoshare (quarterly, as at, DPE). Deaths from StatsNZ open data API, but also in their Covid data portal
legpos="right"
theme_davidhood <- function(){
# theme_minimal(base_family="OpenSans") %+replace%
theme_minimal() %+replace%
theme(panel.grid = element_blank(),
axis.line.x = element_line(size=0.1),
axis.line.y = element_line(size=0.1),
axis.ticks = element_line(size=0.2),
strip.background = element_rect(fill= "#FFFFFF", colour="#EFEFEF"),
strip.text = element_text(size = 13,
margin = margin(t = 5, r = 5, b = 5, l = 5, unit = "pt")),
strip.placement = "inside",
panel.background = element_rect(fill = "#FFFFFF", colour = "#FFFFFF"),
panel.spacing = unit(1.5, "lines"),
plot.title = element_text(size = 14,
lineheight = 1.23,
margin=margin(t = 0, r = 0, b = 10, l = 10, unit = "pt"),
hjust=0),
plot.background = element_rect(fill = "#F3F3F3"),
axis.title = element_text(size=13),
plot.caption = element_text(margin=margin(t = 5, r = 5, b = 5, l = 5, unit = "pt"),
size=11, hjust=1),
plot.caption.position = "plot",
plot.margin = margin(0.3, 0.4, 0.3, 0.3, "cm"),
legend.position = legpos)
}
source("get-odata-fun.R")
library(tidyr)
library(dplyr)
library(lubridate)
library(ggplot2)
library(ggthemes)
library(readr)
six_cols <- (colorblind_pal()(6))
if(!file.exists("../misc_data/NZ_weekly_deaths.csv")){
theres_data <- get_odata(
service = "https://api.stats.govt.nz/opendata/v1",
endpoint = "Covid-19Indicators",
entity = "Observations",
query_option = "$filter=(ResourceID eq 'CPWEE1')",
service_api_key = "You_will_need_your_own_API_key_from_StatsNZ")
write.csv(theres_data, "../misc_data/NZ_weekly_deaths.csv")
}
weekly_deaths <- read_csv("../misc_data/NZ_weekly_deaths.csv",
col_types=cols(
...1 = col_double(),
id = col_character(),
ResourceID = col_character(),
GeoUnit = col_logical(),
Geo = col_logical(),
Period = col_date(format = ""),
Duration = col_character(),
Label1 = col_character(),
Label2 = col_logical(),
Label3 = col_logical(),
Label4 = col_logical(),
Label5 = col_logical(),
Label6 = col_logical(),
Value = col_double(),
Unit = col_character(),
Measure = col_character(),
Multiplier = col_double(),
NullReason = col_logical(),
Status = col_logical()
), name_repair = "unique")
latest_week = max(weekly_deaths$Period)
age_populations <- read_csv("DPE403901_20220311_082941_21.csv", skip=3,
col_types = cols(
...1 = col_character(),
`0-4 Years` = col_double(),
`5-9 Years` = col_double(),
`10-14 Years` = col_double(),
`15-19 Years` = col_double(),
`20-24 Years` = col_double(),
`25-29 Years` = col_double(),
`30-34 Years` = col_double(),
`35-39 Years` = col_double(),
`40-44 Years` = col_double(),
`45-49 Years` = col_double(),
`50-54 Years` = col_double(),
`55-59 Years` = col_double(),
`60 Years and Over` = col_double(),
`80 Years and Over` = col_double()
), name_repair = "unique")
age_populations$Total = rowSums(age_populations[,2:14])
age_populations$`80 and over` = age_populations$`80 Years and Over`
age_populations$`60 to 79` = age_populations$`60 Years and Over` -
age_populations$`80 Years and Over`
age_populations$`30 to 59` = age_populations$`30-34 Years` +
age_populations$`35-39 Years` +
age_populations$`40-44 Years` +
age_populations$`45-49 Years` +
age_populations$`50-54 Years` +
age_populations$`55-59 Years`
age_populations$`Under 30` = age_populations$`0-4 Years` +
age_populations$`5-9 Years` +
age_populations$`10-14 Years` +
age_populations$`15-19 Years` +
age_populations$`20-24 Years` +
age_populations$`25-29 Years`
quartly_pop <- age_populations %>%
filter(!is.na(Total)) %>%
separate(`...1`, into=c("Yr","Qt"), sep="Q", convert = TRUE) %>%
mutate(Quarterly_date = floor_date(ISOdate(Yr, Qt*3,30) + days(3),"quarter")) %>%
select(Quarterly_date, Total:`Under 30`) %>%
gather(key="Label1", value="Population", Total:`Under 30`)
nextq <- quartly_pop %>%
filter(Quarterly_date > max(Quarterly_date) - days(200)) %>%
arrange(Label1, Quarterly_date) %>%
group_by(Label1) %>%
mutate(change = Population - lag(Population),
meanchange = mean(change, na.rm=TRUE),
Population = Population + meanchange) %>%
slice(n()) %>%
ungroup() %>%
mutate(Quarterly_date = floor_date(Quarterly_date + days(120), unit="quarter")) %>%
select(Label1, Quarterly_date, Population)
quartly_pop <- bind_rows(quartly_pop, nextq)
mortality <- weekly_deaths %>%
select(Period, Label1, Value) %>%
mutate(Quarterly_date = floor_date(Period, "quarter")) %>%
inner_join(quartly_pop, by = c("Label1", "Quarterly_date")) %>%
mutate(mort100K = 100000 * Value/Population,
week_ending = ISOdate(2022, month(Period), day(Period)),
Years = ifelse(year(Period) == 2022, "2022", "2011-21")) %>%
filter(Label1 != "Total") %>%
mutate(Label1 = factor(Label1,
levels=c("Under 30", "30 to 59",
"60 to 79", "80 and over")))
lineonly <- mortality %>% filter(year(Period) == 2022)
graph_mort <- ggplot(mortality,
aes(x=week_ending, y=mort100K, colour=Years, alpha=Years)) +
geom_point(size=0.8) + facet_wrap(~ Label1, ncol=2, scales = "free_y")+
geom_line(data=lineonly) +
theme_davidhood() +
scale_alpha_manual(values=c(0.6,1)) +
scale_colour_manual(values=six_cols[c(2,1)]) +
scale_x_datetime(date_labels = "%b") +
labs(title=paste("NZ Mortality by week. To week ending", latest_week),
subtitle="2022 (black) compared to 2011-2021 aggregate pattern (orange)",
x="\nWeek ending\n", y="\nDeaths per 100,000\n",
caption="Source:StatsNZ Open Data weekly deaths, Infoshare population")
graph_mort
ggsave(filename="~/Desktop/mort_22.png", plot=graph_mort,dpi=72, units="in",
bg="white", height = 5.556 * 1.6, width=9.877* 1.6)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment