Created
December 7, 2024 21:20
-
-
Save thoughtfulbloke/aa313dbf6cdf0818b75919e683ba0192 to your computer and use it in GitHub Desktop.
My very tidy solution to day7 in the advent of code
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(gtools) | |
library(stringr) | |
library(dplyr) | |
library(tidyr) | |
d7 <- readLines("day07.txt") | |
#assumes you kept the resut of part1 to save work | |
d7p1 <- as.numeric(readLines("d7p1result.txt")) | |
p2data <- d7[d7p1 == 0] | |
p2sums <- as.numeric(gsub(":.*","",p2data)) | |
p2input <- gsub(".*: ","",p2data) | |
p2results <- data.frame(dataID = p2input, expected_results = p2sums) | |
p2operationscount <- str_count(p2input, " ") | |
# 1 is addition, 2 is multiplication, 3 is concatination, 0 is hold | |
permus <- function(x, x_index=p2input,y_ops=p2operationscount, paddingvalue=max(p2operationscount)){ | |
x_index <- x_index[x] | |
y_ops <- y_ops[x] | |
plustimes = permutations(n=3,r=(y_ops), v=1:3, repeats.allowed=TRUE) | |
#we checked perms without concat in part1 | |
has_concat = which(apply(plustimes, 1, function(x){sum(x == 3)})>0) | |
wanted_rows = plustimes[has_concat,1:ncol(plustimes)] | |
padding <- matrix(data=rep(0,nrow(wanted_rows)*(paddingvalue-ncol(wanted_rows)+1)), | |
ncol = (paddingvalue-ncol(wanted_rows)+1)) | |
padded <- as.data.frame(cbind(wanted_rows,padding)) | |
padded$dataID = x_index | |
return(padded) | |
} | |
p2_data_ops_L <- lapply(1:length(p2input),permus) | |
p2_data_DF <- bind_rows(p2_data_ops_L) | |
rm(p2_data_ops_L) | |
p2_operations <- p2_data_DF |> select(dataID,V1:V11) | |
p2_numbers <- p2_data_DF |> select(dataID) |> | |
separate_wider_delim(dataID, delim=" ", names=paste0("N",1:12), | |
too_few = "align_start", cols_remove = FALSE) | |
p2_numbers <- p2_numbers %>% | |
mutate(across(starts_with("N"), as.numeric)) | |
options(scipen = 999) | |
rolling_outcome <- p2_numbers[[1]] | |
for(i in 1:11){ | |
operations_i <- p2_operations[[i+1]] | |
new_numbers_i <- p2_numbers[[i+1]] | |
rolling_outcome[operations_i == 1] <- rolling_outcome[operations_i == 1] + | |
new_numbers_i[operations_i == 1] | |
rolling_outcome[operations_i == 2] <- rolling_outcome[operations_i == 2] * | |
new_numbers_i[operations_i == 2] | |
rolling_outcome[operations_i == 3] <- as.numeric(paste0(rolling_outcome[operations_i == 3], | |
new_numbers_i[operations_i == 3])) | |
} | |
outcometest <- data.frame(testresult = rolling_outcome, dataID=p2_operations$dataID) | |
foundresults <- outcometest |> left_join(p2results, join_by(dataID)) |> | |
filter(testresult == expected_results) |> | |
distinct() | |
sum(d7p1) + sum(foundresults$expected_results) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment