Skip to content

Instantly share code, notes, and snippets.

@thvitt
Created March 14, 2025 18:29
Show Gist options
  • Save thvitt/42ee55e3365aabc659056c6bdfe168e1 to your computer and use it in GitHub Desktop.
Save thvitt/42ee55e3365aabc659056c6bdfe168e1 to your computer and use it in GitHub Desktop.
  • Die eingebauten Grafikchips von Intels Meteor-Lake-Architektur, wie sie z.B. in meinem Laptop verbaut sind, sind auch für Pytorch nutzbar – das Stichwort dazu ist xpu statt cuda. Auf meinem Laptop (Intel Core Ultra 7 155H, Meteor Lake-P [Intel Arc Graphics]) habe ich damit einen Inferenz-Task von 56:15 min, 39.71s/it auf 07:29 min, 5.69s/it beschleunigt, also ca. auf ⅐. Es sind drei Dinge nötig:
    • Installation der Intel-Treiber für GPUs und des Intel-KI-Frameworks im OS

      • Siehe auf der Intel-Seite. Hier beschrieben für Debian Unstable (≈ Anleitungen für Ubuntu 24.10)
        • GPU-Treiber:
          • Man lege die Datei /etc/apt/sources.list.d/intel-graphics.sources mit folgendem Inhalt an:
            Types: deb 
            URIs: https://ppa.launchpadcontent.net/kobuk-team/intel-graphics/ubuntu
            Suites: oracular 
            Components: main 
            Signed-By: /etc/apt/keyrings/intel-graphics.asc
            
            Types: deb-src
            URIs: https://ppa.launchpadcontent.net/kobuk-team/intel-graphics/ubuntu
            Suites: oracular 
            Components: main 
            Signed-By: /etc/apt/keyrings/intel-graphics.asc
            
          • Auf dem ppa:kobuk-team/intel-graphics lade man den Signing Key (die .asc-Datei) herunter und lege sie in /etc/apt/keyrings/intel-graphics.asc ab
          • dann:
            sudo apt update
            
            # Install the compute-related packages
            sudo apt install libze-intel-gpu1 libze1 intel-metrics-discovery intel-opencl-icd clinfo intel-gsc
            
            # Install the media-related packages
            sudo apt install intel-media-va-driver-non-free libmfx1 libmfx-gen1 libvpl2 libvpl-tools libva-glx2 va-driver-all vainfo
            
            # Install development libraries, needed for pytorch
            sudo apt install libze-dev intel-ocloc
        • Intel Deep Learning Essentials
          • /etc/apt/sources.list.d/intel-oneapi.sources:
            Types: deb
            URIs: https://apt.repos.intel.com/oneapi 
            Suites: all 
            Components: main
            Signed-By: /etc/apt/keyrings/oneapi-archive-keyring.gpg
            
          • Der Schlüssel kann so heruntergeladen werden:
            # download the key to system keyring
            wget -qO- https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB \
            	| sudo gpg --dearmor -o /etc/apt/keyrings/oneapi-archive-keyring.gpg
          • Installation:
            sudo apt update
            sudo apt install intel-deep-learning-essentials-2025.0
          • Das Framework ist dann in /opt/intel/oneapi. Intel empfiehlt noch, folgendes Setup in die .bashrc / .zshrc aufzunehmen, das ist aber für Pytorch via pip nicht zwingend notwendig.
            source /opt/intel/oneapi/compiler/2025.0/env/vars.sh
            source /opt/intel/oneapi/umf/0.9/env/vars.sh
            source /opt/intel/oneapi/pti/0.10/env/vars.sh
    • Installation einer xpu-Variante von Pytorch

      • Die Varianten liegen, wie bei Pytorch übrig, in einem eigenen Index. Für uv (uv-Doku zu Pytorch) kann man das z.B. so in der pyproject.toml konfigurieren, danach kann man dann mit uv sync --extra=xpu (bzw. CPU bzw. cu121) für XPU/CUDA 12/CPU installieren:
        # optional dependencies (extras). Use with, e.g., uv sync --extra=xpu or pip install projectname[cpu]
        [project.optional-dependencies]
        cpu = ["torch>=2.5.1"]
        cu121 = ["torch>=2.5.1"]
        xpu = ["torch>=2.5.1", "pytorch-triton-xpu ; sys_platform == 'linux'"]
        
        # the extra dependency groups are mutually exclusive
        [tool.uv]
        conflicts = [[{ extra = "cpu" }, { extra = "xpu" }, { extra = "cu121" }]]
        
        # for each package listed as key, specify a specific index (~ pypi) to use depending on the extra
        [tool.uv.sources]
        torch = [
          { index = "pytorch-cpu", extra = "cpu" },
          { index = "pytorch-xpu", extra = "xpu" },
          { index = "pytorch-cu121", extra = "cu121" },
        ]
        pytorch-triton-xpu = [
          { index = "pytorch-xpu", extra = "xpu", marker = "sys_platform == 'linux'" },
           ]
        
        # now, define the index entries used above.
        [[tool.uv.index]]
        name = "pytorch-cpu"
        url = "https://download.pytorch.org/whl/cpu"
        explicit = true   # only for the packages explicitly associated with the index
        
        [[tool.uv.index]]
        name = "pytorch-xpu"
        url = "https://download.pytorch.org/whl/xpu"
        explicit = true
        
        [[tool.uv.index]]
        name = "pytorch-cu121"
        url = "https://download.pytorch.org/whl/cu121"
        explicit = true
    • Unterstützung im Programm; d.h. .to("xpu") statt .to("cuda")

      • def best_device(*models: torch.nn.Module) -> torch.device:
            force_cpu = os.environ.get("FORCE_CPU")
            if not force_cpu and torch.cuda.is_available():
                device = torch.device("cuda")
                for model in models:
                    model.cuda()
            elif not force_cpu and torch.xpu.is_available():
                device = torch.device("xpu")
                for model in models:
                    model.xpu()
            else:
                device = torch.device("cpu")
                for model in models:
                    model.cpu()
            return device
        
        device = best_device(model)
        
        # ...
        
        some_tensor.to(device)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment