Created
September 19, 2021 02:45
-
-
Save tiandiao123/2d15f321c42d3e6a77c0f69b0d0f6107 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import mxnet | |
from mxnet.gluon.model_zoo.vision import get_model | |
import tvm | |
from tvm import relay | |
import tvm.contrib.graph_runtime as runtime | |
import numpy as np | |
dtype = "float32" | |
input_shape = (1, 3, 224, 224) | |
block = get_model('resnet18_v1', pretrained=True) | |
mod, params = relay.frontend.from_mxnet(block, shape={'data': input_shape}, dtype=dtype) | |
from tvm.relay.op.contrib.tensorrt import partition_for_tensorrt | |
mod, config = partition_for_tensorrt(mod, params) | |
target = "cuda" | |
with tvm.transform.PassContext(opt_level=3, config={'relay.ext.tensorrt.options': config}): | |
lib = relay.build(mod, target=target, params=params) | |
dev = tvm.context(str(target), 1) | |
loaded_lib = tvm.runtime.load_module('compiled.so') | |
gen_module = runtime.GraphModule(loaded_lib['default'](dev)) | |
input_data = np.random.uniform(0, 1, input_shape).astype(dtype) | |
gen_module.run(data=input_data) | |
# Evaluate | |
print("Evaluate inference time cost...") | |
ftimer = gen_module.module.time_evaluator("run", dev, repeat=10, min_repeat_ms=500) | |
prof_res = np.array(ftimer().results) * 1e3 # convert to millisecond | |
message = "Mean inference time (std dev): %.2f ms (%.2f ms)" % (np.mean(prof_res), np.std(prof_res)) | |
print(message) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment