Skip to content

Instantly share code, notes, and snippets.

@tiandiao123
Created November 20, 2023 03:52
Show Gist options
  • Save tiandiao123/6899956ca2646d03641a9030bc834688 to your computer and use it in GitHub Desktop.
Save tiandiao123/6899956ca2646d03641a9030bc834688 to your computer and use it in GitHub Desktop.
import argparse
import time
import torch
import torch.distributed as dist
import transformers
from transformers import LlamaForCausalLM, LlamaTokenizer
import colossalai
from colossalai.inference import CaiInferEngine
from colossalai.testing import spawn
def run_inference(args):
llama_model_path = args.path
max_input_len = args.max_input_len
max_output_len = args.max_output_len
max_batch_size = args.batch_size
micro_batch_size = args.micro_batch_size
tp_size = args.tp_size
pp_size = args.pp_size
rank = dist.get_rank()
tokenizer = LlamaTokenizer.from_pretrained(llama_model_path)
tokenizer.pad_token_id = tokenizer.unk_token_id
model = LlamaForCausalLM.from_pretrained(llama_model_path, pad_token_id=tokenizer.eos_token_id)
model = model.half()
model = transformers.LlamaForCausalLM(
transformers.LlamaConfig(
vocab_size=20000, hidden_size=512, intermediate_size=1536, num_attention_heads=4, num_hidden_layers=4
)
)
engine = CaiInferEngine(
tp_size=tp_size,
pp_size=pp_size,
model=model,
max_output_len=max_output_len,
micro_batch_size=micro_batch_size,
)
input_tokens = {
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device="cuda"),
"attention_mask": torch.ones((max_batch_size, max_input_len), device="cuda"),
}
iters = 10
warmup = 3
times = []
for i in range(iters):
torch.cuda.synchronize()
start = time.time()
outputs = engine.generate(input_tokens)
torch.cuda.synchronize()
end = time.time()
if rank == 0:
out_len = len(outputs[0])
print("generation time {} s".format(str(end - start)))
print(out_len)
times.append((end - start) / out_len)
if rank == 0:
times = times[warmup:]
latency = sum(times) / len(times)
print("total process latency is : " + str(latency) + " s")
print("total throughput is : " + str(1 / latency * max_batch_size))
def run_tp_pipeline_inference(rank, world_size, port, args):
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
run_inference(args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-p", "--path", type=str, help="Model path", required=True)
parser.add_argument("-tp", "--tp_size", type=int, default=1, help="Tensor parallel size")
parser.add_argument("-pp", "--pp_size", type=int, default=1, help="Tensor parallel size")
parser.add_argument("-b", "--batch_size", type=int, default=64, help="Maximum batch size")
parser.add_argument("--max_input_len", type=int, default=512, help="Maximum input length")
parser.add_argument("--max_output_len", type=int, default=256, help="Maximum output length")
parser.add_argument("--micro_batch_size", type=int, default=64, help="Micro batch size")
args = parser.parse_args()
spawn(run_tp_pipeline_inference, nprocs=args.tp_size * args.pp_size, args=args)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment