Created
November 20, 2023 03:52
-
-
Save tiandiao123/6899956ca2646d03641a9030bc834688 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import time | |
import torch | |
import torch.distributed as dist | |
import transformers | |
from transformers import LlamaForCausalLM, LlamaTokenizer | |
import colossalai | |
from colossalai.inference import CaiInferEngine | |
from colossalai.testing import spawn | |
def run_inference(args): | |
llama_model_path = args.path | |
max_input_len = args.max_input_len | |
max_output_len = args.max_output_len | |
max_batch_size = args.batch_size | |
micro_batch_size = args.micro_batch_size | |
tp_size = args.tp_size | |
pp_size = args.pp_size | |
rank = dist.get_rank() | |
tokenizer = LlamaTokenizer.from_pretrained(llama_model_path) | |
tokenizer.pad_token_id = tokenizer.unk_token_id | |
model = LlamaForCausalLM.from_pretrained(llama_model_path, pad_token_id=tokenizer.eos_token_id) | |
model = model.half() | |
model = transformers.LlamaForCausalLM( | |
transformers.LlamaConfig( | |
vocab_size=20000, hidden_size=512, intermediate_size=1536, num_attention_heads=4, num_hidden_layers=4 | |
) | |
) | |
engine = CaiInferEngine( | |
tp_size=tp_size, | |
pp_size=pp_size, | |
model=model, | |
max_output_len=max_output_len, | |
micro_batch_size=micro_batch_size, | |
) | |
input_tokens = { | |
"input_ids": torch.randint(1, 1000, (max_batch_size, max_input_len), device="cuda"), | |
"attention_mask": torch.ones((max_batch_size, max_input_len), device="cuda"), | |
} | |
iters = 10 | |
warmup = 3 | |
times = [] | |
for i in range(iters): | |
torch.cuda.synchronize() | |
start = time.time() | |
outputs = engine.generate(input_tokens) | |
torch.cuda.synchronize() | |
end = time.time() | |
if rank == 0: | |
out_len = len(outputs[0]) | |
print("generation time {} s".format(str(end - start))) | |
print(out_len) | |
times.append((end - start) / out_len) | |
if rank == 0: | |
times = times[warmup:] | |
latency = sum(times) / len(times) | |
print("total process latency is : " + str(latency) + " s") | |
print("total throughput is : " + str(1 / latency * max_batch_size)) | |
def run_tp_pipeline_inference(rank, world_size, port, args): | |
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") | |
run_inference(args) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("-p", "--path", type=str, help="Model path", required=True) | |
parser.add_argument("-tp", "--tp_size", type=int, default=1, help="Tensor parallel size") | |
parser.add_argument("-pp", "--pp_size", type=int, default=1, help="Tensor parallel size") | |
parser.add_argument("-b", "--batch_size", type=int, default=64, help="Maximum batch size") | |
parser.add_argument("--max_input_len", type=int, default=512, help="Maximum input length") | |
parser.add_argument("--max_output_len", type=int, default=256, help="Maximum output length") | |
parser.add_argument("--micro_batch_size", type=int, default=64, help="Micro batch size") | |
args = parser.parse_args() | |
spawn(run_tp_pipeline_inference, nprocs=args.tp_size * args.pp_size, args=args) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment