Created
January 23, 2022 22:45
-
-
Save tiandiao123/bab72351c2b9a1915548076edf36d0cb to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tvm | |
from tvm import relay | |
from tvm.relay.op.contrib.tensorrt import partition_for_tensorrt | |
from tvm.contrib import graph_executor | |
import numpy as np | |
# 改成你自己的tvm .so 存储路径 | |
my_lib_saved_path = "/data00/cuiqing.li/xperf_workplace/xperf_tools/xperf_tools/xperf_pipeline/bytetuner/rh2_tvm_lab.vulgar.pipeline_1.4/deploy_batch_id_32.so" | |
lib = tvm.runtime.load_module(my_lib_saved_path) | |
target = "cuda" | |
ctx = tvm.device(target, 0) | |
module = graph_executor.GraphModule(lib["default"](ctx)) | |
# 改成模型本身的输入信息,如input nanes 还有对应的input shape, input dtype 的信息 | |
input_names = ["data"] | |
input_shapes = [[32, 3, 224, 224]] | |
dtypes = ["float32"] | |
batch_size = int(input_shapes[0][0]) | |
for i in range(len(input_names)): | |
input_name = input_names[i] | |
input_shape = input_shapes[i] | |
dtype = dtypes[i] | |
data_tvm = tvm.nd.array(np.random.uniform(size = input_shape).astype(dtype), ctx) | |
module.set_input(input_name, data_tvm) | |
# get output of tvm | |
module.run() | |
out = module.get_output(0) | |
print("warming up ... ") | |
for i in range(10): | |
module.run() | |
print("Evaluate inference time cost...") | |
ftimer = module.module.time_evaluator("run", ctx, repeat=10, min_repeat_ms=500) | |
prof_res = np.array(ftimer().results) * 1e3 # convert to millisecond | |
message = "Mean inference time (std dev): %.2f ms (%.2f ms)" % (np.mean(prof_res), np.std(prof_res)) | |
print(message) | |
ms_to_s = np.mean(prof_res) * 0.001 | |
print("the QPS of tvm model is {} ".format(str(batch_size/ ms_to_s))) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment