Last active
September 7, 2021 21:22
-
-
Save tiandiao123/c535b62918677d0a7c45fc005a44f27d to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# FP16 TRT command to run : TVM_TENSORRT_USE_FP16=1 python test_trt.py | |
# INT8 TRT command to run : TVM_TENSORRT_USE_INT8=1 TENSORRT_NUM_CALI_INT8=10 python test_trt.py | |
# https://github.com/tiandiao123/tvm/tree/pr_trt_int8 (tvm we use) | |
import tvm | |
from tvm import relay | |
from tvm.contrib.download import download_testdata | |
from tvm.relay.op.contrib.tensorrt import partition_for_tensorrt | |
# PyTorch imports | |
import torch | |
import torchvision | |
from torchvision import transforms | |
# additonal imports | |
import os | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
from scipy.spatial import distance | |
def compare_tvm_torch_output(tvm_res, torch_res): | |
tvm_res = tvm_res.flatten() | |
torch_res = torch_res.flatten() | |
return np.max(np.abs(tvm_res-torch_res)) | |
def cosine_distance(matrix1 , matrix2): | |
res = distance.cosine(matrix1, matrix2) | |
return res | |
model_name = "resnet18" | |
model = getattr(torchvision.models, model_name)(pretrained=True) | |
model = model.eval() | |
# We grab the TorchScripted model via tracing | |
input_shape = [1, 3, 224, 224] | |
input_data = torch.randn(input_shape) | |
scripted_model = torch.jit.trace(model, input_data).eval() | |
scripted_model.save("mobilenet_v2.pt") | |
img_url = "https://github.com/dmlc/mxnet.js/blob/main/data/cat.png?raw=true" | |
img_path = download_testdata(img_url, "cat.png", module="data") | |
img = Image.open(img_path).resize((224, 224)) | |
my_preprocess = transforms.Compose( | |
[ | |
transforms.Resize(256), | |
transforms.CenterCrop(224), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
] | |
) | |
img = my_preprocess(img) | |
img = np.expand_dims(img, 0) | |
input_name = "input0" | |
shape_list = [(input_name, img.shape)] | |
mod, params = relay.frontend.from_pytorch(scripted_model, shape_list) | |
# compile the model | |
target = "cuda" | |
dev = tvm.cuda(1) | |
mod, config = partition_for_tensorrt(mod, params) | |
print("python script started building --------------") | |
with tvm.transform.PassContext(opt_level=3, config={'relay.ext.tensorrt.options': config}): | |
lib = relay.build(mod, target=target, params=params) | |
print("python script finsihed building -------------------") | |
dtype = "float32" | |
lib.export_library('compiled.so') | |
loaded_lib = tvm.runtime.load_module('compiled.so') | |
gen_module = tvm.contrib.graph_executor.GraphModule(loaded_lib['default'](dev)) | |
num_cali_int8 = 0 | |
try: | |
num_cali_int8 = os.environ["TENSORRT_NUM_CALI_INT8"] | |
print("we are going to set {} times calibration in this case".format(num_cali_int8)) | |
except: | |
print("no TENSORRT_NUM_CALI_INT8 found in this case ... ") | |
num_cali_int8 = int(num_cali_int8) | |
if num_cali_int8 != 0: | |
print("calibration steps ... ") | |
for i in range(num_cali_int8): | |
tvm_data = tvm.nd.array(img) | |
gen_module.set_input(input_name, tvm_data) | |
gen_module.run(data=tvm_data) | |
print("finished calibration step") | |
# get output of tvm model | |
print("test run ... ") | |
tvm_data = tvm.nd.array(img) | |
gen_module.set_input(input_name, tvm_data) | |
gen_module.run(data=tvm_data) | |
out = gen_module.get_output(0) | |
# check output of tvm and output of pytorch model are equal | |
data_np = img | |
device = "cuda:1" | |
torch_data = torch.from_numpy(data_np) | |
torch_data = torch_data.to(device) | |
model = scripted_model | |
model = model.eval() | |
model = model.to(device) | |
torch_output = model(torch_data) | |
max_diff = compare_tvm_torch_output(out.numpy(), torch_output.detach().cpu().numpy()) | |
print("the largest difference between two arrays: {}".format(str(max_diff))) | |
print("the cosine distance between torch output and trt int8 output of tvm : ") | |
cosine_distance_res = cosine_distance(out.numpy(), torch_output.detach().cpu().numpy()) | |
print(cosine_distance_res) | |
# Evaluate | |
print("Evaluate inference time cost...") | |
ftimer = gen_module.module.time_evaluator("run", dev, repeat=10, min_repeat_ms=500) | |
prof_res = np.array(ftimer().results) * 1e3 # convert to millisecond | |
message = "Mean inference time (std dev): %.2f ms (%.2f ms)" % (np.mean(prof_res), np.std(prof_res)) | |
print(message) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment