-
-
Save tiandiao123/c87a020e95c67e5dfc13439cc8210d76 to your computer and use it in GitHub Desktop.
Optimize the BERT model on CPUs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import argparse | |
import numpy as np | |
import mxnet as mx | |
import gluonnlp as nlp | |
import tvm | |
from tvm import relay | |
import tvm.contrib.graph_runtime as runtime | |
def timer(thunk, repeat=1, number=10, dryrun=3, min_repeat_ms=1000): | |
"""Helper function to time a function""" | |
for i in range(dryrun): | |
thunk() | |
ret = [] | |
for _ in range(repeat): | |
while True: | |
beg = time.time() | |
for _ in range(number): | |
thunk() | |
end = time.time() | |
lat = (end - beg) * 1e3 | |
if lat >= min_repeat_ms: | |
break | |
number = int(max(min_repeat_ms / (lat / number) + 1, number * 1.618)) | |
ret.append(lat / number) | |
return ret | |
parser = argparse.ArgumentParser(description="Optimize BERT-base model from GluonNLP") | |
parser.add_argument("-b", "--batch", type=int, default=1, | |
help="Batch size (default: 1)") | |
parser.add_argument("-l", "--length", type=int, default=128, | |
help="Sequence length (default: 128)") | |
args = parser.parse_args() | |
batch = args.batch | |
seq_length = args.length | |
# Instantiate a BERT classifier using GluonNLP | |
model_name = 'bert_12_768_12' | |
dataset = 'book_corpus_wiki_en_uncased' | |
mx_ctx = mx.cpu() | |
bert, _ = nlp.model.get_model( | |
name=model_name, | |
ctx=mx_ctx, | |
dataset_name=dataset, | |
pretrained=False, | |
use_pooler=True, | |
use_decoder=False, | |
use_classifier=False) | |
model = nlp.model.BERTClassifier(bert, dropout=0.1, num_classes=2) | |
model.initialize(ctx=mx_ctx) | |
model.hybridize(static_alloc=True) | |
# Prepare input data | |
dtype = "float32" | |
inputs = np.random.randint(0, 2000, size=(batch, seq_length)).astype(dtype) | |
token_types = np.random.uniform(size=(batch, seq_length)).astype(dtype) | |
valid_length = np.asarray([seq_length] * batch).astype(dtype) | |
# Convert to MXNet NDArray and run the MXNet model | |
inputs_nd = mx.nd.array(inputs, ctx=mx_ctx) | |
token_types_nd = mx.nd.array(token_types, ctx=mx_ctx) | |
valid_length_nd = mx.nd.array(valid_length, ctx=mx_ctx) | |
mx_out = model(inputs_nd, token_types_nd, valid_length_nd) | |
mx_out.wait_to_read() | |
# Benchmark the MXNet latency | |
res = timer(lambda: model(inputs_nd, token_types_nd, valid_length_nd).wait_to_read(), | |
repeat=3, | |
dryrun=5, | |
min_repeat_ms=1000) | |
print(f"MXNet latency for batch {batch} and seq length {seq_length}: {np.mean(res):.2f} ms") | |
###################################### | |
# Optimize the BERT model using TVM | |
###################################### | |
# First, Convert the MXNet model into TVM Relay format | |
shape_dict = { | |
'data0': (batch, seq_length), | |
'data1': (batch, seq_length), | |
'data2': (batch,) | |
} | |
mod, params = relay.frontend.from_mxnet(model, shape_dict) | |
# Compile the imported model | |
target = "llvm -mcpu=skylake-avx512 -libs=cblas" | |
with relay.build_config(opt_level=3, required_pass=["FastMath"]): | |
graph, lib, cparams = relay.build(mod, target, params=params) | |
# Create the executor and set the parameters and inputs | |
ctx = tvm.cpu() | |
rt = runtime.create(graph, lib, ctx) | |
rt.set_input(**cparams) | |
rt.set_input(data0=inputs, data1=token_types, data2=valid_length) | |
# Run the executor and validate the correctness | |
rt.run() | |
out = rt.get_output(0) | |
tvm.testing.assert_allclose(out.asnumpy(), mx_out.asnumpy(), rtol=1e-3, atol=1e-3) | |
# Benchmark the TVM latency | |
ftimer = rt.module.time_evaluator("run", ctx, repeat=3, min_repeat_ms=1000) | |
prof_res = np.array(ftimer().results) * 1000 | |
print(f"TVM latency for batch {batch} and seq length {seq_length}: {np.mean(prof_res):.2f} ms") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import time | |
import argparse | |
import numpy as np | |
import mxnet as mx | |
import gluonnlp as nlp | |
import tvm | |
from tvm import relay | |
import tvm.contrib.graph_runtime as runtime | |
def timer(thunk, repeat=1, number=10, dryrun=3, min_repeat_ms=1000): | |
"""Helper function to time a function""" | |
for i in range(dryrun): | |
thunk() | |
ret = [] | |
for _ in range(repeat): | |
while True: | |
beg = time.time() | |
for _ in range(number): | |
thunk() | |
end = time.time() | |
lat = (end - beg) * 1e3 | |
if lat >= min_repeat_ms: | |
break | |
number = int(max(min_repeat_ms / (lat / number) + 1, number * 1.618)) | |
ret.append(lat / number) | |
return ret | |
parser = argparse.ArgumentParser(description="Optimize DistilBERT model from GluonNLP") | |
parser.add_argument("-b", "--batch", type=int, default=1, | |
help="Batch size (default: 1)") | |
parser.add_argument("-l", "--length", type=int, default=128, | |
help="Sequence length (default: 128)") | |
args = parser.parse_args() | |
batch = args.batch | |
seq_length = args.length | |
# Instantiate a BERT classifier using GluonNLP | |
model_name = 'distilbert_6_768_12' | |
dataset = 'distilbert_book_corpus_wiki_en_uncased' | |
mx_ctx = mx.cpu() | |
bert, _ = nlp.model.get_model( | |
name=model_name, | |
ctx=mx_ctx, | |
dataset_name=dataset, | |
pretrained=False, | |
use_pooler=False, | |
use_decoder=False, | |
use_classifier=False) | |
model = nlp.model.RoBERTaClassifier(bert, dropout=0.1, num_classes=2) | |
model.initialize(ctx=mx_ctx) | |
model.hybridize(static_alloc=True) | |
# Prepare input data | |
dtype = "float32" | |
inputs = np.random.randint(0, 2000, size=(batch, seq_length)).astype(dtype) | |
valid_length = np.asarray([seq_length] * batch).astype(dtype) | |
# Convert to MXNet NDArray and run the MXNet model | |
inputs_nd = mx.nd.array(inputs, ctx=mx_ctx) | |
valid_length_nd = mx.nd.array(valid_length, ctx=mx_ctx) | |
mx_out = model(inputs_nd, valid_length_nd) | |
mx_out.wait_to_read() | |
# Benchmark the MXNet latency | |
res = timer(lambda: model(inputs_nd, valid_length_nd).wait_to_read(), | |
repeat=3, | |
dryrun=5, | |
min_repeat_ms=1000) | |
print(f"MXNet latency for batch {batch} and seq length {seq_length}: {np.mean(res):.2f} ms") | |
###################################### | |
# Optimize the BERT model using TVM | |
###################################### | |
# First, Convert the MXNet model into TVM Relay format | |
shape_dict = { | |
'data0': (batch, seq_length), | |
'data1': (batch,) | |
} | |
mod, params = relay.frontend.from_mxnet(model, shape_dict) | |
# Compile the imported model | |
target = "llvm -mcpu=skylake-avx512 -libs=cblas" | |
with relay.build_config(opt_level=3, required_pass=["FastMath"]): | |
graph, lib, cparams = relay.build(mod, target, params=params) | |
# Create the executor and set the parameters and inputs | |
ctx = tvm.cpu() | |
rt = runtime.create(graph, lib, ctx) | |
rt.set_input(**cparams) | |
rt.set_input(data0=inputs, data1=valid_length) | |
# Run the executor and validate the correctness | |
rt.run() | |
out = rt.get_output(0) | |
tvm.testing.assert_allclose(out.asnumpy(), mx_out.asnumpy(), rtol=1e-3, atol=1e-3) | |
# Benchmark the TVM latency | |
ftimer = rt.module.time_evaluator("run", ctx, repeat=3, min_repeat_ms=1000) | |
prof_res = np.array(ftimer().results) * 1000 | |
print(f"TVM latency for batch {batch} and seq length {seq_length}: {np.mean(prof_res):.2f} ms") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment