Created
November 19, 2023 05:29
-
-
Save tiandiao123/d5a30697864376fa5943fd8e953ae34a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from vllm import LLM, SamplingParams | |
import torch | |
from torch import distributed as dist | |
import time | |
from tqdm import tqdm | |
import numpy as np | |
# # Create an LLM. | |
llm = LLM( | |
# model="/home/lclcq/share/llama-7b", | |
model="/home/lclhx/share/Colossal-LLaMA-2-7b-sft", | |
# model="/home/lclcq/share/models--bigscience--bloom-560m/snapshots/4f42c91d806a19ae1a46af6c3fb5f4990d884cd6", | |
# model="facebook/opt-125m", | |
tensor_parallel_size=1, | |
# max_num_seqs=1, | |
# max_num_batched_tokens=2048, | |
gpu_memory_utilization=0.95, | |
trust_remote_code=True) | |
def run_to_completion(sampling_params, dummy_prompt_token_ids, profile: bool = False): | |
if profile: | |
torch.cuda.cudart().cudaProfilerStart() | |
torch.cuda.synchronize() | |
start_time = time.time() | |
llm.generate(prompt_token_ids=dummy_prompt_token_ids, | |
sampling_params=sampling_params, | |
use_tqdm=False) | |
torch.cuda.synchronize() | |
end_time = time.time() | |
latency = end_time - start_time | |
if profile: | |
torch.cuda.cudart().cudaProfilerStop() | |
return latency | |
batch = 32 | |
input_len = 512 | |
out_len = 256 | |
sampling_params = SamplingParams( | |
n=1, | |
temperature=1.0, | |
top_p=1.0, | |
use_beam_search=False, | |
ignore_eos=True, | |
max_tokens=out_len, | |
) | |
dummy_prompt_token_ids = [] | |
dummy_prompt_token_ids_s = torch.randint(1, 10240, (batch, input_len)) | |
for t in range(batch): | |
a = [] | |
for i in range(input_len): | |
a.append(i) | |
dummy_prompt_token_ids.append(a) # print(dummy_prompt_token_ids) | |
# print("Warming up...") | |
for i in range(2): | |
run_to_completion(sampling_params, dummy_prompt_token_ids, profile=False) | |
# Benchmark. | |
#latencies = [] | |
#for _ in range(5): #tqdm(range(5), desc="Profiling iterations"): | |
# latencies.append(run_to_completion(sampling_params, dummy_prompt_token_ids, profile=False)) | |
#prefill_avg_latency = np.mean(latencies) | |
#print(f'prefill latency: {prefill_avg_latency*1000 / out_len} ms') | |
# print(f'Avg throughput: {out_len/avg_latency} tokens/seconds') | |
#out_len = 128 | |
#sampling_params = SamplingParams( | |
# n=1, | |
# temperature=1.0, | |
# top_p=1.0, | |
# use_beam_search=False, | |
# ignore_eos=True, | |
# max_tokens=out_len, | |
#) | |
dummy_prompt_token_ids = [] | |
dummy_prompt_token_ids_s = torch.randint(1, 10240, (batch, input_len)) | |
for t in range(batch): | |
a = [] | |
for i in range(input_len): | |
a.append(i) | |
dummy_prompt_token_ids.append(a) | |
latencies = [] | |
for _ in range(5): #tqdm(range(5), desc="Profiling iterations"): | |
latencies.append(run_to_completion(sampling_params, dummy_prompt_token_ids, profile=False)) | |
avg_latency = np.mean(latencies) | |
print(f'Avg latency: {avg_latency*1000} ms') | |
# print(f'Decode throughput: {batch*out_len/(avg_latency - prefill_avg_latency)} tokens/s') | |
print(f'total throughput: {batch*out_len/avg_latency} tokens/s') |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment