Last active
November 17, 2020 03:00
-
-
Save tiaplagata/0011b2062a5ddf4b900c66a26eded664 to your computer and use it in GitHub Desktop.
Custom Pipeline with Grid Search
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.metrics import recall_score, make_scorer | |
# Define the pipeline | |
pipeline = Pipeline(steps= [ | |
("ColumnTransformer", SelectColumnsTransformer(columns=features_to_use)), | |
("TransformCategorical", Transform_Categorical()), | |
("SMOTE", SMOTE()), | |
("GradientBooster", GradientBoostingClassifier()) | |
]) | |
# Create a param grid experimenting with different feature sets and parameters | |
param_grid = { | |
"ColumnTransformer__columns": [['account length', 'international plan', 'voice mail plan'], | |
['account length', 'international plan', 'total charge'], | |
['international plan', 'total minutes', 'total calls']], | |
"SMOTE__sampling_strategy": [0.5, 1], | |
"GradientBooster__loss": ['deviance', 'exponential'], | |
"GradientBooster__n_estimators": [100, 150], | |
} | |
# Run a grid search with the pipeline | |
# Use scoring parameter to maximize the recall score | |
gs_pipeline = GridSearchCV(pipeline, param_grid=param_grid, verbose=2, scoring=make_scorer(recall_score)) | |
gs_pipeline.fit(X_train, y_train) | |
# Store the best model | |
best_model = gs_pipeline.best_estimator_ | |
# Make predictions on our validation set and see recall score of best model | |
y_validation_preds = best_model.predict(X_validation) | |
recall_score(y_validation, y_validation_preds) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment