Created
January 17, 2021 02:58
-
-
Save tikurahul/9560b754b7963afb71c40a41248ebd57 to your computer and use it in GitHub Desktop.
Depth AI Custom Layer
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pathlib import Path | |
import cv2 | |
import numpy as np | |
import depthai as dai | |
if __name__ == "__main__": | |
model_path = Path(__file__).parent / 'custom_ops/out' | |
pipeline = dai.Pipeline() | |
# Source | |
camera = pipeline.createColorCamera() | |
camera.setPreviewSize(300, 300) | |
camera.setCamId(0) | |
camera.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P) | |
camera.setInterleaved(False) | |
# Ops | |
detection = pipeline.createNeuralNetwork() | |
blob_path = model_path / 'model.blob' | |
detection.setBlobPath(f'{blob_path.as_posix()}') | |
camera.preview.link(detection.input) | |
# Link Outputs for Detection | |
x_out = pipeline.createXLinkOut() | |
x_out.setStreamName('custom') | |
detection.out.link(x_out.input) | |
device = dai.Device(pipeline) | |
device.startPipeline() | |
frame_buffer = device.getOutputQueue(name='custom', maxSize=4) | |
while True: | |
frame = frame_buffer.get() | |
# Returns a list | |
layer = frame.getFirstLayerFp16() | |
layer = np.array(layer, dtype=np.uint8) | |
shape = (300, 300) | |
frame_data = layer.reshape(shape) | |
frame_data = np.expand_dims(frame_data, axis=-1) | |
cv2.imshow('Image', frame_data) | |
if cv2.waitKey(1) == ord('q'): | |
break |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment