Created
December 27, 2016 13:18
-
-
Save tilfin/98bbba47fdc4ac10c4069cce5fabd834 to your computer and use it in GitHub Desktop.
Face detect and crop by using OpenCV
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import cv2 | |
import sys | |
import os | |
class FaceCropper(object): | |
CASCADE_PATH = "data/haarcascades/haarcascade_frontalface_default.xml" | |
def __init__(self): | |
self.face_cascade = cv2.CascadeClassifier(self.CASCADE_PATH) | |
def generate(self, image_path, show_result): | |
img = cv2.imread(image_path) | |
if (img is None): | |
print("Can't open image file") | |
return 0 | |
#img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
faces = self.face_cascade.detectMultiScale(img, 1.1, 3, minSize=(100, 100)) | |
if (faces is None): | |
print('Failed to detect face') | |
return 0 | |
if (show_result): | |
for (x, y, w, h) in faces: | |
cv2.rectangle(img, (x,y), (x+w, y+h), (255,0,0), 2) | |
cv2.imshow('img', img) | |
cv2.waitKey(0) | |
cv2.destroyAllWindows() | |
facecnt = len(faces) | |
print("Detected faces: %d" % facecnt) | |
i = 0 | |
height, width = img.shape[:2] | |
for (x, y, w, h) in faces: | |
r = max(w, h) / 2 | |
centerx = x + w / 2 | |
centery = y + h / 2 | |
nx = int(centerx - r) | |
ny = int(centery - r) | |
nr = int(r * 2) | |
faceimg = img[ny:ny+nr, nx:nx+nr] | |
lastimg = cv2.resize(faceimg, (32, 32)) | |
i += 1 | |
cv2.imwrite("image%d.jpg" % i, lastimg) | |
if __name__ == '__main__': | |
args = sys.argv | |
argc = len(args) | |
if (argc != 2): | |
print('Usage: %s [image file]' % args[0]) | |
quit() | |
detecter = FaceCropper() | |
detecter.generate(args[1], True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
This is a problem with your image, I suggest you compress the image and then run, I had the same issue and compressed the image to <500kB then it worked.