Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save timcdlucas/9d8d29d7f9761dfcc7b139ca7c021609 to your computer and use it in GitHub Desktop.
Save timcdlucas/9d8d29d7f9761dfcc7b139ca7c021609 to your computer and use it in GitHub Desktop.
# Assume just the first 16 parameters vary, but can do the same thing.
df <-
data.frame(
ad.surv.intercept=rep(0.0002516054, 16 * 2),
ad.surv.temp=0.1702,
ad.surv.pack=-0.1654,
disp.intercept=0.0064262,
disp.pack.size=0.10594,
#IBI.average=10.81
#IBI.temp=1.02
pup.intercept=0.87515,
pup.pack.size=0.04574,
juv.surv.intercept=18.61131,
juv.surv.temp=-0.70572,
juv.surv.litter=0.5482,
IBI.intercept=-17.25578,
IBI.tempcoef=0.91565,
IBI.pups=0.51976,
#sets my mean temperature (change temp)
meantemp=28.22864,
#the actual mean temperature at present
actual.meantemp=28.22864,
number.of.packs=9
)
for(i in 1:(nrow(df) / 2)){
df[i, i] <- 0.99 * df[i, i]
}
for(i in ((nrow(df) / 2) + 1) : nrow(df)){
df[i, i - nrow(df) / 2] <- 0.99 * df[i, i - nrow(df) / 2]
}
#for 2 iterations (guessing you want 1000 because it's stochastic)
its <- 2
df_big <- do.call(rbind, replicate(its, df, simplify = FALSE))
tic()
results <-
lapply(1:nrow(df_big), function(x)
results = run_simulation(df_big[x, 1],
df_big[x, 2],
ad.surv.pack,disp.intercept,disp.pack.size,IBI.intercept,IBI.tempcoef,IBI.pups,
pup.intercept,pup.pack.size,juv.surv.intercept,juv.surv.temp,juv.surv.litter,
meantemp,actual.meantemp,number.of.packs,n.steps,repeats, burntime)
)
toc()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment