Created
October 4, 2019 09:28
-
-
Save timcdlucas/c5c4d2fb2ef957bde5914ab2e583676a to your computer and use it in GitHub Desktop.
A markdown script for looking at geographic random forests.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#'--- | |
#'output: | |
#' pdf_document: | |
#' number_sections: true | |
#' toc: true | |
#' toc_depth: 2 | |
#'title: "RandomForest with distance to points" | |
#'author: Tim Lucas | |
#'fontsize: 8pt | |
#'geometry: margin=0.5in | |
#'--- | |
#+ libs | |
library(caret) | |
library(INLA) | |
library(ggplot2) | |
#+ simulate_data | |
data <- data.frame(x = seq(0, 1, length.out = 200), | |
train = rep(c(T, F), each = 100)) | |
data$y <- sin(data$x * 10) + rnorm(200, 0, 0.2) | |
#+ first_look | |
ggplot(data, aes(x, y, colour = train)) + | |
geom_point() | |
#+ fit_gp | |
INLA:::inla.dynload.workaround() | |
mesh <- inla.mesh.1d(data$x, degree = 2) | |
sigma0 = 0.1 | |
kappa0 = 5 | |
tau0 = 1 / (4 * kappa0^3 * sigma0^2)^0.5 | |
spde = inla.spde2.matern(mesh, constr = FALSE, | |
B.tau = cbind(log(tau0), 1), | |
B.kappa = cbind(log(kappa0), 0), | |
theta.prior.prec = 1e-4) | |
A = inla.spde.make.A(mesh, loc = data$x[data$train]) | |
x.index = inla.spde.make.index("x", n.spde = spde$n.spde) | |
stack = inla.stack(data = list(y = data$y[data$train]), | |
A = list(A), | |
effects = list(x.index), | |
tag = "est") | |
Apred = inla.spde.make.A(mesh, loc = data$x[!data$train]) | |
stack_pred = inla.stack(data = list(y = rep(NA, length = 100)), | |
A = list(Apred), | |
effects = list(x.index), | |
tag = "pred") | |
stacks = inla.stack.join(stack, stack_pred) | |
formula = y ~ -1 + f(x, model = spde) | |
dat <- inla.stack.data(stacks) | |
result = inla(formula, family = "gaussian", data = dat, | |
control.predictor = list(A = inla.stack.A(stacks), | |
link = 1, | |
compute = TRUE), | |
verbose = FALSE) | |
autoplot(result) | |
result$summary.fitted.values[1:200, 'mean'] %>% plot | |
data$inla_pred <- result$summary.fitted.values[1:200, 'mean'] | |
#+ plot_gp | |
ggplot(data, aes(x, y, colour = train)) + | |
geom_point() + | |
geom_line(aes(y = inla_pred), colour = 'red') | |
#+ fit_rf | |
rf1 <- train(y = data$y[1:100], x = data[1:100, 'x', drop = FALSE], | |
method = 'rf', | |
tuneLength = 1, | |
trControl = trainControl(number = 3)) | |
data$rf1 <- predict(rf1, newdata = data) | |
#+ plot_rf1 | |
ggplot(data, aes(x, y, colour = train)) + | |
geom_point() + | |
geom_line(aes(y = inla_pred), colour = 'red') + | |
geom_line(aes(y = rf1), colour = 'blue') | |
#+ fit_rf_dist | |
xdist <- as.matrix(dist(data$x)) | |
rf2 <- train(y = data$y[1:100], x = xdist[1:100, 1:100], | |
method = 'rf', | |
tuneLength = 5, | |
trControl = trainControl(number = 3)) | |
data$rf2 <- predict(rf2, newdata = xdist[, 1:100]) | |
#+ plot_rf2 | |
ggplot(data, aes(x, y, colour = train)) + | |
geom_point() + | |
geom_line(aes(y = inla_pred), colour = 'red') + | |
geom_line(aes(y = rf1), colour = 'blue') + | |
geom_line(aes(y = rf2), colour = 'purple') + | |
ggtitle('Red: gp, blue: rf, purple: rf_distance_topoints') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment