Created
August 8, 2012 20:20
-
-
Save timelyportfolio/3298278 to your computer and use it in GitHub Desktop.
why trend is not your friend on french industries
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#get very helpful Ken French data | |
#for this project we will look at Industry Portfolios | |
#http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/48_Industry_Portfolios_daily.zip | |
require(latticeExtra) | |
require(PerformanceAnalytics) | |
require(quantmod) | |
#my.url will be the location of the zip file with the data | |
my.url="http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/48_Industry_Portfolios_daily.zip" | |
#this will be the temp file set up for the zip file | |
my.tempfile<-paste(tempdir(),"\\frenchindustry.zip",sep="") | |
#my.usefile is the name of the txt file with the data | |
my.usefile<-paste(tempdir(),"\\48_Industry_Portfolios_daily.txt",sep="") | |
download.file(my.url, my.tempfile, method="auto", | |
quiet = FALSE, mode = "wb",cacheOK = TRUE) | |
unzip(my.tempfile,exdir=tempdir(),junkpath=TRUE) | |
#read space delimited text file extracted from zip | |
french_industry <- read.table(file=my.usefile, | |
header = TRUE, sep = "", | |
as.is = TRUE, | |
skip = 9, nrows=12211) | |
#get dates ready for xts index | |
datestoformat <- rownames(french_industry) | |
datestoformat <- paste(substr(datestoformat,1,4), | |
substr(datestoformat,5,6),substr(datestoformat,7,8),sep="-") | |
#get xts for analysis | |
french_industry_xts <- as.xts(french_industry[,1:NCOL(french_industry)], | |
order.by=as.Date(datestoformat)) | |
#divide by 100 to get percent | |
french_industry_xts <- french_industry_xts/100 | |
#delete missing data which is denoted by -0.9999 | |
french_industry_xts[which(french_industry_xts < -0.99,arr.ind=TRUE)[,1], | |
unique(which(french_industry_xts < -0.99,arr.ind=TRUE)[,2])] <- 0 | |
#get price series or cumulative growth of 1 | |
french_industry_price <- cumprod(french_industry_xts+1) | |
#do 200 day moving average for initial testing | |
#just change n to test on other widths or rolling period | |
ma <- as.xts(apply(french_industry_price, MARGIN = 2, FUN = runMean, n=200), order.by = index(french_industry_price)) | |
#do plot to test reasonableness | |
chart.TimeSeries(ma,ylog=TRUE) | |
#set up system to enter when price moves above moving average | |
#exit when below | |
ma.system <- lag(as.xts( | |
apply(french_industry_price > ma, MARGIN = 2, as.numeric), | |
order.by = index(french_industry_price)), | |
k=1) * french_industry_xts | |
#get returns cumulative and annualized for the entire period | |
ret.comp.cumul <- Return.cumulative(ma.system) - Return.cumulative(french_industry_xts) | |
ret.bh.ann <- Return.annualized(french_industry_xts) | |
ret.comp.ann <- Return.annualized(ma.system) - ret.bh.ann | |
rownames(ret.comp.ann) <- "Out(under)performance" | |
#get colors to use for heat map style coloring by out/under performance | |
brew <- brewer.pal(name="RdBu",n=5) | |
#get color ramp | |
cc.brew <- colorRampPalette(brew) | |
#apply color ramp | |
cc <- cc.brew(length(ret.comp.ann)) | |
#do colors based on out/under performance but with gray so visible when labelling | |
cc.palette <- colorRampPalette(c(cc[1],"gray60",cc[length(cc)])) | |
cc.levpalette <- cc.palette(length(ret.comp.ann)) | |
cc.levels <- level.colors(ret.comp.ann, at = do.breaks(c(-max(abs(ret.comp.ann)),max(abs(ret.comp.ann))),length(ret.comp.ann)), | |
col.regions = cc.levpalette) | |
#plot(ret.comp.cumul ~ Return.cumulative(french_industry_xts),pch=19) | |
#plot out/underperformance of ma system vs annualized compounded return of buyhold | |
plot(x=ret.bh.ann,y=ret.comp.ann, | |
pch=19, col=cc.levels,bty="l", | |
xlab = "Ann. Return of BuyHold", ylab = "Out(under)Performance of MA") | |
text(x=ret.bh.ann,y=ret.comp.ann, labels=colnames(ret.comp.ann), cex=0.7, pos=2, col=cc.levels) | |
#plot out/underperformance of ma system vs std. dev. of buyhold | |
plot(y=ret.comp.ann, x=apply(na.omit(french_industry_xts),MARGIN=2,sd), | |
pch=19,col=cc.levels,bty="l", | |
xlab = "StdDev of BuyHold", ylab = "Out(under)Performance of MA") | |
text(y=ret.comp.ann, x=apply(na.omit(french_industry_xts),MARGIN=2,sd), labels=colnames(ret.comp.ann), cex=0.7, pos=2, col=cc.levels) | |
#plot out/underperformance of ma system vs Omega of buyhold | |
plot(y=ret.comp.ann, x=Omega(french_industry_xts), | |
pch=19,col=cc.levels,bty="l", | |
xlab = "Omega of BuyHold", ylab = "Out(under)Performance of MA") | |
text(y=ret.comp.ann, x=Omega(french_industry_xts), labels=colnames(ret.comp.ann), cex=0.7, pos=2, col=cc.levels) | |
#using rugarch get garch stats similar to those explored in the research | |
require(rugarch) | |
spec = ugarchspec( | |
variance.model=list(garchOrder=c(1,1)), | |
mean.model=list(armaOrder=c(1,1), include.mean=T)) | |
#set up function to get garch stats through apply function | |
gfNa <- function(data, spec) { | |
x <- na.omit(coredata(data)) | |
gf <- suppressWarnings(ugarchfit(spec=spec, data=x)) | |
stats <- coef(gf) | |
return(stats) | |
} | |
#do apply to get garch stats across all industries | |
gf.stats <- apply(french_industry_xts[,1:NCOL(french_industry_xts)],MARGIN=2,FUN=gfNa,spec=spec) | |
#plot return comparison by each garch stat | |
for (i in 1:NROW(gf.stats)) { | |
plot(y=ret.comp.ann, x=gf.stats[i,], | |
pch=19, col=cc.levels, bty="l", | |
xlab=rownames(gf.stats)[i], ylab="Out(under)Performance of MA") | |
text(y=ret.comp.ann, x=gf.stats[i,], labels=colnames(ret.comp.ann), cex=0.7, pos=2, col=cc.levels) | |
} | |
#thinking through linear model | |
#linmod = lm(as.vector(ret.comp.ann)~as.vector(gf.stats[1,])) | |
#plot(linmod) | |
#do parallel coordinates chart with color | |
require(MASS) | |
parcoord(cbind(t(ret.comp.ann),t(gf.stats)[,c(1,2,5)]), | |
col = cc.levels,lwd = 2, | |
main = "Out(under)Performance by GARCH Stat") | |
parcoord(cbind(t(ret.comp.ann),t(gf.stats)), | |
col = cc.levels,lwd = 2, | |
main = "Out(under)Performance by GARCH Stat") | |
#get rolling out(under) performance for horizon chart | |
#change na to 0 in ma.system returns | |
ma.system[which(is.na(ma.system),arr.ind=TRUE)[,1], | |
unique(which(is.na(ma.system),arr.ind=TRUE)[,2])] <- 0 | |
ma_system_price <- cumprod(1+ma.system) | |
roc <- french_industry_price | |
#split into groups so do not run out of memory | |
for (i in seq(12,48,by=12)) { | |
#get difference in rolling performance | |
roc[,((i-11):(i))] <- ROC(ma_system_price[,((i-11):(i))],n=250,type="discrete") - | |
ROC(french_industry_price[,((i-11):(i))],n=250,type="discrete") | |
} | |
roc[1:250,] <- 0 | |
#do a horizon plot of all 48 industries with horizonscale of 0.25 | |
horizonplot(roc, | |
layout=c(1,48), | |
horizonscale=0.25, #feel free to change to whatever you would like | |
scales = list(tck = c(1,0), y = list(draw = FALSE,relation = "same")), | |
origin = 0, | |
colorkey = FALSE, | |
#since so many industries, we will comment out grid | |
# panel = function(x, ...) { | |
# panel.horizonplot(x, ...) | |
# panel.grid(h=3, v=0,col = "white", lwd=1,lty = 3) | |
# }, | |
ylab = list(rev(colnames(roc)), rot = 0, cex = 0.7, pos = 3), | |
xlab = NULL, | |
par.settings=theEconomist.theme(box = "gray70"), | |
#use ylab above for labelling so we can specify FALSE for strip and strip.left | |
strip = FALSE, | |
strip.left = FALSE, | |
main = "Moving Averages System Performance on French Daily 48 Industry 1963-2011\n source: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment