Skip to content

Instantly share code, notes, and snippets.

@timm
Last active March 19, 2023 02:00
Show Gist options
  • Save timm/816280747cc235f389a4eafc8a6437fa to your computer and use it in GitHub Desktop.
Save timm/816280747cc235f389a4eafc8a6437fa to your computer and use it in GitHub Desktop.
Multi-objective semi-supervised learning

SWAY

Basic multi-objective random projections, [email protected]
home | code | lib | tests | makefile

TOD0:

  • load into DATA
  • implement distance functions
  • recursively bi-cluster via distance to to two distant points
  • optimize by recursively prune worst half (SWAY)
  • used to decision tree to distinguish best leaf from rest = [ ] ❌ numbers appearing in ranges that are not in the data??
  • find node in tree with best b^2/(b+r)
  • report stats
  • run the above throw a dozen optimization problems
  • check if order is good even if prediction is wrong
  • paper for ICSE'23? or ASE'23?
-- vim: set syntax=lua ts=2 sw=2 expandtab:
local lib=require"lib"
local the=lib.settings[[
sway101: a little LUA learning lab for exploring sampling
(c) 2023, Tim Menzies <[email protected]> BSD-2
USAGE: lua tests.lua [OPTIONS] [ -g ACTION]
OPTIONS:
-b --bins initial number of bins = 16
-c --cohen cohen's D = .35
-f --file data file = ../data/auto93.csv
-F --Far distance to far points = .95
-g --go start up action = nothing
-G --Goal goal criteria = plan
-h --help show help = false
-m --min cluster leaf size=N^min = .5
-n --nums how many nums to cache = 256
-p --p distance exponent = 2
-r --rest expansion of best = 3
-S --Some rows to explore for poles = 512
-s --seed random number seed = 937162211
-w --wild run tests,not protected = false]]
---------------------------------------------------------------------------------------------------
local kap,map,o,oo,push = lib.kap, lib.map, lib.o, lib.oo, lib.push
local rand,rint,lt,gt,sort = lib.rand,lib.rint,lib.lt, lib.gt, lib.sort
local copy,inc,per = lib.copy,lib.inc,lib.per
local fmt,any,many = lib.fmt,lib.any, lib.many
local median,stdev,entropy = lib.median, lib.stdev, lib.entropy
local isNum,isSym,isData,isRow
function isRow(t) return t.cells end
function isNum(t) return t.lo end
function isSym(t) return t.most end
function isData(t) return t.rows end
---------------------------------------------------------------------------------------------------
local NUM,SYM,COL,COLS
function COL(n,s, col)
col = (s:find"^[A-Z]" and NUM or SYM)(n,s)
col.isIgnored = col.txt:find"X$"
col.isKlass = col.txt:find"!$"
col.isGoal = col.txt:find"[!+-]$"
return col end
function COLS(ss, col,cols)
cols = {names=ss, all={},x={},y={}}
for n,s in pairs(ss) do
col = push(cols.all, COL(n,s))
if not col.isIgnored then
if col.isKlass then cols.klass = col end
push(col.isGoal and cols.y or cols.x, col) end end
return cols end
function NUM(n,s)
return {at=n, txt=s or "", n=0, has={}, ok=false,
hi=-math.huge, lo=math.huge, w=(s or ""):find"-$" and -1 or 1} end
function SYM(n,s)
return {at=n, txt=s or "", n=0, has={}, most=0, mode=nil} end
---------------------------------------------------------------------------------------------------
local add,has,mid,div,norm,merge,merged,includes
function add(col,x, n, t)
if x=="?" then return x end
n = n or 1
col.n = col.n + n
t = col.has
if isSym(col)
then if inc(t,x,n) > col.most then col.most,col.mode = t[x],x end else
col.lo = math.min(x, col.lo)
col.hi = math.max(x, col.hi)
if #t<the.nums then col.ok=false; t[1+#t]= x
elseif rand() < the.nums/col.n then col.ok=false; t[rint(1,#t)] = x end end end
function has(col)
if isNum(col) and not col.ok then sort(col.has); col.ok=true end
return col.has end
function mid(col)
return isSym(col) and col.mode or median(has(col)) end
function div(col)
return isNum(col) and stdev(has(col)) or entropy(col.has) end
function norm(num,x)
return (x=="?" and x) or (x - num.lo)/(num.hi - num.lo) end
function merge(col1,col2, new)
new = copy(col1)
if isSym(col1)
then for x,n in pairs(col2.has) do add(new,x,n) end
else for _,n in pairs(col2.has) do add(new,n) end
new.lo = math.min(col1.lo, col2.lo)
new.hi = math.max(col1.hi, col2.hi) end
return new end
function merged(col1,col2,nSmall, nFar, new)
new = merge(col1,col2)
if nSmall and col1.n < nSmall or col2.n < nSmall then return new end
if nFar and not isSym(col1) and math.abs(mid(col1) - mid(col2)) < nFar then return new end
if div(new) <= (div(col1)*col1.n + div(col2)*col2.n)/new.n then
return new end end
function includes(col,x)
return x=="?" or (isSym(col) and col.has[x]) or (x >= col.lo and x <= col.hi) end
---------------------------------------------------------------------------------------------------
local ROW,DATA,row,better,column,stats
function ROW(t) return {cells=t, best=false, evaluated=false} end
function DATA(src, also, data,add)
data = {rows={}, cols=nil}
add = function(t) row(data,t) end
if type(src)=="string" then lib.csv(src, add) -- src is a csv file
elseif isData(src) then add(src.cols.names) -- src is a DATA we want to emulate
else map(src,add) end -- src is a list
map(also or {}, add)
return data end
function row(data,t)
if data.cols then
t = isRow(t) and t or ROW(t)
push(data.rows, t)
for _,cols in pairs{data.cols.x, data.cols.y} do
for _,col in pairs(cols) do
add(col, t.cells[col.at]) end end
else data.cols = COLS(t) end end
function better(data,row1,row2)
local s1,s2,n,x,y = 0,0,#data.cols.y
for _,col in pairs(data.cols.y) do
x = norm(col, row1.cells[col.at] )
y = norm(col, row2.cells[col.at] )
s1 = s1 - math.exp(col.w * (x-y)/n)
s2 = s2 - math.exp(col.w * (y-x)/n) end
return s1/n < s2/n end
function stats(data, what,cols,nPlaces, fun,tmp)
function fun(_,col, tmp)
tmp= (what or mid)(col)
tmp= isNum(col) and lib.rnd(tmp,nPlaces) or tmp
return tmp,col.txt end
tmp = kap(cols or data.cols.y, fun)
tmp["N"] = #data.rows
return tmp end
---------------------------------------------------------------------------------------------------
local dist,around,half,halves,optimize
function dist(i,data,row1,row2, sym,num)
function sym(a,b)
return a=="?" and b=="?" and 1 or a==b and 0 or 1 end
function num(a,b)
if a=="?" and b=="?" then return 1
elseif a=="?" then a = b < .5 and 1 or 0
elseif b=="?" then b = a < .5 and 1 or 0 end
return math.abs(a - b)
end ----------
local d,n,a,b,inc = 0,#data.cols.x
for _,col in pairs(data.cols.x) do
a,b = row1.cells[col.at], row2.cells[col.at]
inc = isNum(col) and num(norm(col,a), norm(col,b)) or sym(a,b)
d = d + inc^i.p end
return (d/n)^(1/i.p) end
function around(i,data,row1,rows, fun)
fun = function(row2) return {dist=dist(i,data,row1,row2), row=row2} end
return sort(map(rows,fun),lt"dist") end
---------------------------------------------------------------------------------------------------
function half(i,data,rows, project,some,A,B,c,left,right,far,gap)
function gap(r1,r2) return dist(i,data,r1,r2) end
function far(r,rows)
return around(i,data,r,rows)[(i.Far * #rows) // 1].row end
function project(r, a,b)
a, b = gap(r,A), gap(r,B)
return {row=r, x=(a^2 + c^2 - b^2)/(2*c)} end
some = many(rows,i.Some)
A = far(any(some),some)
B = far(A,some)
c = gap(A,B)
left,right = {},{}
for n,tmp in pairs(sort(map(rows,project),lt"x")) do
push(n < #rows/2 and left or right, tmp.row) end
return left,right,A,B,c end
function halves(i,data, rows,stop)
rows = rows or data.rows
stop = stop or (#rows)^i.min
if #rows <= stop
then return {rows=rows}
else local left,right = half(i,data,rows)
return {rows = rows,
left = halves(i,data,left,stop),
right = halves(i,data,right,stop)} end end
---------------------------------------------------------------------------------------------------
function optimize(i,data, rows,stop,rest)
rows = rows or data.rows
stop = stop or (#rows)^i.min
rest = rest or {}
if #rows <= stop
then return DATA(data,rows), DATA(data, many(rest,#rows*the.rest))
else local left,right,A,B = half(i,data,rows)
if better(data,B,A) then left,right=right,left end
for _,row in pairs(right) do push(rest,row) end
return optimize(i,data,left,stop,rest) end end
---------------------------------------------------------------------------------------------------
local score
local is={}
is.plan = function(b,r) return b^2/(b+r) end
is.fear = function(b,r) return r^2/(b+r) end
is.tabu = function(b,r) return math.log(1/(b+r)) end
function score(i,b,r,B,R)
local tiny = 1E-64
return is[i.Goal](b/(B+tiny), r/(R+tiny)) end
print("BR",score({Goal="plan"},4,0,11,33))
-- function extend(tests,test,filter)
-- tests=copy(tests)
-- tests[1+#tests]=(filter or lib.itself)(test)
-- return tests end
--
-- local function TREE(i,cols,best,rows0)
-- local B,R = br(rows0,bestok-)
-- local val = function(b,r) return score(i,b,r,B,R) end
-- stop = (#rows0)^i.min
-- local function tree(rows,path)
-- if #rows >= 2*stop then
-- tmp = map(cols, function(col) return branch(col,rows,,best,val) end)
-- local b, r, yes, no, test = 0, 0, {}, {}, sort(tmp, gt"val")[1].test
-- if test then
-- for _,row in pairs(rows) do
-- if row.y==best then b=b+1 else r=r+1 end
-- push(accept(test,row) and yes or no, row) end
-- return {
-- rows = rows,
-- score = val(b,r),
-- tests = path,
-- left = #yes< #rows and tree(yes,extend(path,test)),
-- right = #no < #rows and tree(no, extend(path,test,flip))} end end
-- end --------------------------------------------
-- return tree(rows0,{}) end
--
-- function branch(col,rows,best,val)
-- local function good(row) if row.cells[col.at] ~= "?" then return row end end
-- rows = sort(map(rows,good), function(r1,r2) return r1.cells[col.at]< r2.cells[col.at] end)
-- local function sym()
-- local b,r = {},{}
-- for j,row in pairs(rows) do
-- local x=row.cells[col.at]
-- b[x] = b[x] or 0
-- r[x] = r[x] or 0
-- if row.y==best then b[x]=b[x]+1 else r[x]=r[x]+1 end end
-- local fun= function(x,b) return {val=val(b,r[x]), cut=x} end
-- local tmp= sort(kap(b, fun),gt"val")[1]
-- return {val=tmp.val, test={at=col.at,txt=col.txt,op="=",x=tmp.cut}}
-- end ------------------------
-- function num()
-- local b0,r0,op,cut = 0,0
-- local b1,r1 = br(rows, best)
-- local best = val(b1,r1)
-- for j,row in pairs(rows) do -- find the cut that minimizes expected value of entropy
-- if row.y==best then b0=b0+1; b1=b1-1 else r0=r0+1; r1=r1-1 end
-- local x=row.cells[col.at]
-- if j < #rows and x ~= rows[j+1].cells[col.at] then
-- local v1 = val(b0,r0)
-- local v2 = val(b1,r1)
-- if v1 > best then best,cut,op = v1,x,"<=" end
-- if v2 > best then best,cut,op = v2,x,">" end end end
-- if cut then
-- return {val=best, test={at=col.at, txt=col.txt, op=op, x=cut}} end
-- end --------------------------------------------------------
-- return (isNum(col) and num or sym)() end
--
local bin,bins,merges,rank,noGaps,selects,sorted,select1
function bin(i,col,x, tmp)
if x=="?" or isSym(col) then return x end
tmp = (col.hi - col.lo)/(i.bins - 1)
return col.hi == col.lo and 1 or math.floor(x/tmp + .5)*tmp end
function bins(i,cols,best,rowss)
local out={}
for _,col in pairs(cols) do -- for all columns
local n,xys=0,{}
for klass,rows in pairs(rowss) do -- for all klasses
for _,row in pairs(rows) do -- for all rows in a klass
local x=row.cells[col.at]
if x ~= "?" then -- for all non-empty cells
n = n + 1
local k = bin(i,col,x) -- map cell to a small number of bins
xys[k] = xys[k] or {x=NUM(col.at,col.txt), y=SYM(col.at,col.txt)}
add(xys[k].y, klass) -- track best/non-best cell values seen in this bin
add(xys[k].x, x) end -- track x cell values seen in this bin
end -- for rows
end -- for klasses
xys = sort(map(xys,lib.itself), function(a,b) return a.x.lo < b.x.lo end)
xys = isSym(col) and xys or merges(xys,n/i.bins,i.cohen*div(col))
push(out, sorted(i,best,rowss,xys)[1])
end -- for col
return selects(i,out,best,rowss) end
function merges(xys0,nSmall,nFar)
local j,xys1=1,{}
while j <= #xys0 do
local one, two = xys0[j], xys0[j+1] -- in lua t0[j+1] returns nil after end of arrary
if two then -- if not at end of array
local x = merged(one.x,two.x,nSmall,nFar) -- if we can merge these x-values
if x then
one = {x=x, y=merge(one.y, two.y)} -- then combine the y-values
j= j + 1 -- skip over item two
end end
push(xys1, one) -- at each stage of the while, keep one thing
j=j+1 end
return #xys0 == #xys1 and xys0 or merges(xys1,nSmall,nFar) end
function noGaps(xys)
xys[1].x.lo = -math.huge
xys[#xys].x.hi = math.huge
for j=2,#xys do xys[j].x.lo = xys[j-1].x.hi end
return xys end
function sorted(i,best,rowss,xys)
local B,R=0,0
for klass,rows in pairs(rowss) do -- get background ratios
if klass==best then B=B+#rows else R=R+#rows end end
for _,xy in pairs(xys) do -- get ratios and score for each xy
local b,r=0,0
for klass,n in pairs(xy.y.has) do
if klass==best then b=b+n else r=r+n end end
xy.score = score(i,b,r,B,R) end
xys = map(xys, function(xy) if xy.score>0 then return xy end end) -- kill bad scores
return sort(xys,gt"score") end
function select(xy,row)
local x= row.cells[xy.x.at]
local tmp= x=="?" or xy.x.lo == xy.x.hi and x==xy.x.lo or x>= xy.x.lo and x<=xy.x.hi
return tmp end
function selects(i,xys,best,rowss)
local all,scored,B,R = {},{},0,0
for klass,rows in pairs(rowss) do
if klass==best then B=B+#rows else R=R+#rows end
for j,row in pairs(rows) do io.write(j," ");row.klass=klass; push(all,row) end end
print("all",#all)
xys = sort(xys,gt"score")
for stop=1,#xys do
local tmp = select1(i,stop,xys,best,all,B,R)
if tmp then push(scored,tmp) end end
map(scored,function(z) print("zz",#z.rule,z.score) end)
return sort(scored,gt"score") end
function select1(i,stop,xys,best,all,B,R)
local tmp,how=all,{}
for j=1,stop do
tmp = map(tmp,function(row) if select(xys[j],row) then return row end end)
if #tmp == 0 then break else
local x=xys[j].x
how[j] = {at=x.at, txt=x.txt, lo=x.lo,hi=x.hi} end
end
local b,r=0,0
for _,row in pairs(tmp) do
if row.klass==best then b=b+1 else r=r+1 end end
print("br",b,r,B,R)
return {rule=how, score=score(i,b,r,B,R)} end
-- local rule,rule1,branches,numBranches,symBranches
-- function rule(i,cols,B,R,rows)
-- return rule1(cols, rows,
-- {},
-- (#rows)^i.min,
-- function(b,r) return score(i,b,r,B,R) end) end
--
-- function rule1(cols,rows,path,stop,val)
-- if #rows < 2*stop then return path end
-- tests = {}
-- map(cols, function(col) branches(col,rows,val,tests) end)
-- test = sort(tests,gt"val")[1]
-- local rest,b,r = {},0,0
-- for _,row in pairs(rows) do
-- if accept(test,row) then
-- if row.best then b=b+1 else r=r+1 end
-- else push(rest,row) end end
-- push(path,{test=test,b=b,r=r,val=val})
-- if #no < #rows1 then return rule1(cols,no,path,stop,val) end end
--
-- function numBranches(col,rows,val,out)
-- local b1,r1=br(rows)
-- local most,b0,r0 = val(b1,r1),0,0
-- local cut,op
-- for j,row in pairs(rows) do
-- if row.y then b0=b0+1; b1=b1-1 else r0=r0+1; r1=r1-1 end
-- local x=row.cells[col.at]
-- if j < #rows-stop and j> stop and x ~= rows[j+1].cells[col.at] then
-- local v1 = val(b0,r0)
-- local v2 = val(b1,r1)
-- if v1 > most then most,cut,op = v1,x,"<=" end
-- if v2 > most then most,cut,op = v2,x,">" end end end
-- if cut then
-- push(out, {val=most, test={at=col.at, txt=col.txt, op=op, x=cut}}) end end
--
-- function symBranches(col,rows,val,out)
-- local bs,rs = {},{}
-- for j,row in pairs(rows) do
-- local x=row.cells[col.at]
-- bs[x] = bs[x] or 0
-- rs[x] = rs[x] or 0
-- if row.best then bs[x]=bs[x]+1 else rs[x]=rs[x]+1 end end
-- for x1,br in pairs(bs) do
-- push(out, {val=val(br,rs[x1]), test={at=col.at,txt=col.txt,op="=",x=x1}}) end end
--
-- function branches(col,rows,val,out)
-- local function good(row) if row.cells[col.at] ~= "?" then return row end end
-- rows = sort(map(rows,good), function(r1,r2) return r1.cells[col.at] < r2.cells[col.at] end)
-- (isNum(col) and numBranches or symBranches)(col,rows,vals,out) end
--
---------------------------------------------------------------------------------------------------
return pcall(debug.getlocal,4,1) and lib.locals() or {}
-- vim: set syntax=lua ts=2 sw=2 expandtab:
--| lintings |-----------------------------------------------------------------------------------
local b4={}; for k,_ in pairs(_ENV) do b4[k]=k end;
local function rogues()
for k,v in pairs(_ENV) do
if not b4[k] then print("?",k,type(v)) end end end
--| short-cuts |---------------------------------------------------------------------------------
local fmt
fmt = string.format
--| maths |----------------------------------------------------------------------------------------
local rand,rint,Seed,rnd
Seed=937162211 -- seed
function rint(nlo,nhi) -- random ints
return math.floor(0.5 + rand(nlo,nhi)) end
function rand(nlo,nhi) -- random floats
nlo, nhi = nlo or 0, nhi or 1
Seed = (16807 * Seed) % 2147483647
return nlo + (nhi-nlo) * Seed / 2147483647 end
function rnd(n, nPlaces)
local mult = 10^(nPlaces or 2)
return math.floor(n * mult + 0.5) / mult end
--| sort |----------------------------------------------------------------------------------------
local sort,lt,gt
function sort(t,fun) table.sort(t,fun); return t end
function lt(x) return function(a,b) return a[x] < b[x] end end
function gt(x) return function(a,b) return a[x] > b[x] end end
--| lists |-----------------------------------------------------------------------------------------
local last,inc,push,any,many,copy,per,median,entropy,stdev
function last(t) return t[#t] end
function inc(t,x,inc) t[x] = (inc or 1)+(t[x] or 0); return t[x] end
function push(t,x) t[1+#t]=x; return x end
function any(t) return t[rint(#t)] end
function many(t,n) local u={}; for j=1,n do push(u, any(t)) end; return u end
function copy(t, u)
if type(t)~="table" then return t end
u={}; for k,v in pairs(t) do u[k] = copy(v) end; return u end
function per(t,p)
p=math.floor(((p or .5)*#t)+.5); return t[math.max(1,math.min(#t,p))] end
function median(t)
local m = #t//2
return (#t % 2 == 0) and (t[m] + t[m+1])/2 or t[m] end
function entropy(t, e,N)
e,N = 0,0,0
for _,n in pairs(t) do if n>0 then N=N+n end end
for _,n in pairs(t) do if n>0 then e=e - n/N*math.log(n/N,2) end end
return e,N end
function stdev(t)
return (per(t,.9) - per(t,.1))/2.56 end
-- function mode(t)
-- local u,hi,z = {},0
-- for _,x in pairs(t) do u[x]=1 + (u[x] or 0); if u[x]>hi then hi,z=u[x],x end end
-- return z end
--
-- function entropy(t)
-- local u={}
-- for _,x in pairs(t) do u[x] = 1 + (u[x] or 0) end
-- return ent(u) end
--
-- function ent(t)
-- local e,n=0,0
-- for _,n1 in pairs(t) do n = n + n1 end
-- for _,n1 in pairs(t) do e = e - n1/n * math.log(n1/n,2) end
-- return e,n end
--| meta |-----------------------------------------------------------------------------------------
local itself,map,kap
function itself(x) return x end
function map(t, fun)
return kap(t, function(_,v) return fun(v) end) end
function kap(t, fun, u)
u={}; for k,v in pairs(t) do v,k=fun(k,v); u[k or (1+#u)]=v end; return u end
--| string 2 things |-----------------------------------------------------------------------------
local trim,coerce,lines,cells,csv,cli,settings
function trim(s)
return s:match"^%s*(.-)%s*$" end
function coerce(s, bool,fun)
bool=function(s) if s=="false" then return false end; return s=="true" and true or s end
fun =function(s) return math.tointeger(s) or tonumber(s) or bool(s) end
return fun(trim(s)) end
function lines(sFilename,fun, src,s)
src = io.input(sFilename)
while true do
s = io.read(); if s then fun(s) else return io.close(src) end end end
function cells(s, t)
t={}; for s1 in s:gmatch("([^,]+)") do t[1+#t] = coerce(s1) end; return t end
function csv(sFilename,fun)
lines(sFilename, function(line) fun(cells(line)) end) end
function cli(t)
for k,v in pairs(t) do
v = tostring(v)
for n,x in ipairs(arg) do
if x=="-"..(k:sub(1,1)) or x=="--"..k then
v= v=="false" and "true" or v=="true" and "false" or arg[n+1] end end
t[k] = coerce(v) end
return t end
function settings(s, t)
t={__help=s}
s:gsub("\n[%s]+[-][%S][%s]+[-][-]([%S]+)[^\n]+= ([%S]+)",function(k,v) t[k]=coerce(v) end)
return t end
--| print |----------------------------------------------------------------------------------------
local o,oo
function oo(t) print(o(t)); return t end
function o(t, fun)
fun = function(k,v) return string.format(":%s %s",k,o(v)) end
return type(t) ~="table" and tostring(t) or
"{"..table.concat(#t>0 and map(t,o) or sort(kap(t,fun))," ").."}" end
--| main |----------------------------------------------------------------------------------------
local cyan,main
function cyan(s) return " \27[36m"..s.."\27[0m" end
function main(funs,the, y,n,saved,k,val,ok)
y,n,saved = 0,0,copy(the)
if the.help
then os.exit(print("\n"..(the.__help:gsub(" ([-][-]?[%S]+)",cyan)))) end
for _,pair in pairs(funs) do
k = pair.key
if the.go==k or the.go=="all" then
for k,v in pairs(saved) do the[k]=v end
Seed = the.seed
math.randomseed(Seed)
print(fmt("\n▶️ %s %s",k,("-"):rep(60)))
if the.wild then pair.fun() else
ok,val = pcall(pair.fun)
if not ok then n=n+1; print(fmt("❌ FAIL %s %s",k,val));
print(debug.traceback())
elseif val==false then n=n+1; print(fmt("❌ FAIL %s",k))
else y=y+1; print(fmt("✅ PASS %s",k)) end end
end
end
if y+n>0 then print(fmt("🔆 %s",o({pass=y, fail=n, success=100*y/(y+n)//1}))) end
rogues()
return n end
--| meta |----------------------------------------------------------------------------------------
local same, locals
function same(x,...) return x end
function locals( t,j,s,x)
t,j,s,x = {},1
while true do
s, x = debug.getlocal(2, j)
if not s then break end
if s:sub(1,1) ~= "" then t[s]=x end
j = j + 1 end
return t end
---------------------------------------------------------------------------------------------------
return pcall(debug.getlocal,4,1) and locals() or {}
-include ../config/do.mk
DO_what= SWAY101: semi-supervised multi-objective explanation
DO_copyright= Copyright (c) 2023 Tim Menzies, BSD-2.
DO_repos= . ../config ../data
install: ../data ../config ## get related repos
../data:
(cd ..; git clone https://gist.github.com/d47b8699d9953eef14d516d6e54e742e.git data)
../config:
(cd ..; git clone https://gist.github.com/42f78b8beec9e98434b55438f9983ecc.git config)
Files= auto2 auto93 china nasa93dem coc1000 pom \
healthCloseIsses12mths0011-easy healthCloseIsses12mths0001-hard SSN SSM
eg1:
$(foreach d,$(Files), figlet -W -f doom $d; lua tests.lua -s $$RANDOM -f ../data/$d.csv -g tree;)
tests:
- lua tests.lua -g all
badge:
if lua tests.lua -g all ;\
then echo "tests PASSED" ;\
sed 's/tests-failing-red/tests-passing-green/'< \!sway101.md >tmp001 ;\
else echo "tests FAIL"; \
sed 's/tests-passing-green/tests-failing-red/'< \!sway101.md >tmp001;\
fi
mv tmp001 \!sway101.md
bib: ## report tex citation
echo "$$tex"
cff: ## report cff citation
echo "$$cff"
#########################################################################
# define large strings
define tex
@misc{sway101,
title="SWAY101: multi-objective semi-supervised explanation tool (in LUA)",
author="Tim Menzies",
year=2023,
url="https://tiny.cc/sway101",
note="Accessed on March 19 2023. Available on-line at https://doi.org/10.6084/m9.figshare.22280518".
}
endef
export tex
define cff
# This CITATION.cff file was generated with cffinit.
# Visit https://bit.ly/cffinit to generate yours today!
cff-version: 1.2.0
title: sway
message: semi-supervised multi-objective explanations
type: software
authors:
- given-names: Tim
family-names: Menzies
email: [email protected]
name-particle: Tim
affiliation: 'CSC, NC State, USA'
orcid: 'https://orcid.org/0000-0002-5040-3196'
- {}
identifiers:
- type: url
value: 'https://tiny.cc/sway101'
description: Permalink to Github gist
repository-code: 'https://tiny.cc/sway101'
url: >-
https://gist.github.com/timm/816280747cc235f389a4eafc8a6437fa#file-sway101-md
abstract: >-
Semi-supervised multi-objective explanations. Recursively
bi-cluster on independent variables.
At each level, using the Zitzler multi-objective
domination predicate (from the IBEA research) to prune
half the data.
At sqrt(N), stop, then build an entropy-based decision
tree to distinguish the best leaf cluster from the rest of
the instances. Report the path to the decision tree node
with most best and least rest.
keywords:
- multi-objective optimization
- semi-supervised learning
- explanation
- landscape analysis
- lua
license: BSD-2-Clause
endef
export cff
-- vim: set syntax=lua ts=2 sw=2 expandtab:
local lib=require"lib"
local kap,map,o,oo,push = lib.kap,lib.map,lib.o,lib.oo,lib.push
local code=require"code"
local stats=code.stats
local the,DATA,COLS = code.the,code.DATA,code.COLS
the = lib.cli(the)
local egs,go={}
function go(key,fun) egs[1+#egs] = {key=key,fun=fun} end
go("the",function() print(oo(code.the)) end)
go("cols",function()
oo(COLS{"name","Age","Weight-"}) end)
go("data",function() map(DATA(the.file).cols.x,oo) end)
go("clone",function( d)
d=DATA(the.file)
oo(d.cols.y)
print"------------------"
oo(DATA(d,d.rows).cols.y)
end)
go("sort",function( d)
d=DATA(the.file)
lib.sort(d.rows,function(a,b) return code.better(d,a,b) end)
for j=1,#d.rows,40 do oo(d.rows[j].cells) end
end)
go("dists",function( d)
d=DATA(the.file)
for j=1,#d.rows,20 do
print(code.dist(the,d,d.rows[1],d.rows[j])) end
end)
go("optimize",function( d,b,r,all,guess)
d=DATA(the.file)
all= DATA(d)
b,r = code.optimize(the,d)
print("data",o(stats(d)))
print("rest",o(stats(r)))
print("sway",o(stats(b)))
lib.sort(d.rows, function(a,b) return code.better(d,a,b) end)
for j=1,#b.rows do code.row(all, d.rows[j]) end
print("best",o(stats(all)))
guess= DATA(d,code.many(d.rows,#b.rows))
print("guess",o(stats(guess)))
end)
go("tree", function( d,b,r,at,cut,best,top)
d=DATA(the.file)
print(oo(stats(d)))
b,r = code.optimize(the,d)
--for _,row in pairs(b.rows) do oo(row.cells) end
--for _,row in pairs(r.rows) do oo(row.cells) end
for col,xys in pairs(code.bins(the,d.cols.x,"best", {best=b.rows,rest=r.rows})) do
print""
print(col)
print(#xys)
print(oo(xys)) end
print(1000)
-- code.showTree(the,top,"best")
-- tests=bestNodes(the,top,"best")
-- d1=DATA(d,map(d.rows, function(row) if code.accepts(tests,row) then return row end end))
-- print(oo(stats(d1)))
end)
os.exit( lib.main(egs,code.the))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment