Created
July 29, 2021 12:42
-
-
Save timotta/ceaec141cbb0b18740b5c48071d989ae to your computer and use it in GitHub Desktop.
Gensim word2vec indexed words in a dataframe, dealing with padding and unknown values
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Needs EMBED_SIZE ans SENTENCE_SIZE | |
# df.text_array is a column with list os word in each cell | |
w2v_model = Word2Vec( | |
sentences=df.text_array, | |
vector_size=EMBED_SIZE, | |
window=5, | |
min_count=1, | |
workers=4, | |
seed=1982, | |
epochs=W2V_EPOCHS, | |
) | |
w2v_model.wv.add_vector("<UNK>", np.zeros(EMBED_SIZE)) | |
w2v_model.wv.add_vector("<PAD>", np.zeros(EMBED_SIZE)) | |
print(f"vocabulary: {len(w2v_model.wv.key_to_index)}") | |
def pad(size): | |
def _pad(text_array): | |
diff = size - len(text_array) | |
if diff > 0: | |
pads = [ "<PAD>" for i in range(diff) ] | |
return pads + text_array | |
return text_array[:size] | |
return _pad | |
def word_to_index_array(w2v_model): | |
def _w(text_array): | |
result = [] | |
for w in text_array: | |
values = w2v_model.wv.key_to_index.get(w) | |
if not values: | |
values = w2v_model.wv.key_to_index.get("<UNK>") | |
result.append( values ) | |
return result | |
return _w | |
df["text_array_padded"] = df.text_array.apply(pad(size=SEQUENCE_SIZE)) | |
df["text_array_indexes"] = df.text_array_padded.apply(word_to_index_array(w2v_model)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment