Last active
July 29, 2021 12:32
-
-
Save timotta/d33322008ffd07df54260905515f52e2 to your computer and use it in GitHub Desktop.
LSTM binary classification using pytorch and skorch, and pretrained gensin word2vec
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Needs gensim w2v_model trained | |
# EMBED_SIZE defined | |
# X should be a Matrix with examples on rows, and word indexes in sequence as columns | |
class LSTMClassification(nn.Module): | |
def __init__(self, embed_vector, hidden_dim=100, dropout=0.5): | |
super(LSTMClassification, self).__init__() | |
self.n_layers = 1 | |
self.output_size = 1 | |
self.hidden_dim = hidden_dim | |
self.embed_dim = embed_vector.shape[1] | |
self.embedding = nn.Embedding(len(embed_vector), EMBED_SIZE, padding_idx=len(embed_vector)-1) | |
self.lstm = nn.LSTM(self.embed_dim, hidden_dim, num_layers=self.n_layers, batch_first=True, | |
bidirectional=True) | |
self.linear = nn.Linear(hidden_dim*2, self.output_size) | |
self.drop = nn.Dropout(p=dropout) | |
def forward(self, x): | |
batch_size = x.size(0) | |
embeds = self.embedding(x.long()) | |
hidden = self.init_hidden(batch_size) | |
lstm_out, _ = self.lstm(embeds, hidden) | |
linear_input = lstm_out[:, -1, :] | |
linear = self.linear(linear_input) | |
return self.drop(linear) | |
def init_hidden(self, batch_size): | |
is_cuda = torch.cuda.is_available() | |
if is_cuda: | |
device = torch.device("cuda") | |
else: | |
device = torch.device("cpu") | |
weight = next(self.parameters()).data | |
hidden = ( | |
weight.new(self.n_layers*2, batch_size, self.hidden_dim).zero_().to(device), | |
weight.new(self.n_layers*2, batch_size, self.hidden_dim).zero_().to(device) | |
) | |
return hidden | |
net = NeuralNetBinaryClassifier( | |
LSTMClassification, | |
max_epochs=100, | |
batch_size=1024, | |
lr=0.001, | |
module__embed_vector=w2v_model.wv.vectors, | |
optimizer=torch.optim.Adam, | |
callbacks=[EarlyStopping(monitor='valid_acc', lower_is_better=False)], | |
) | |
torch.manual_seed(1982) | |
torch.cuda.manual_seed(1982) | |
np.random.seed(1982) | |
print("Starting...") | |
net.fit(X, y) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment