Bootstrap knowledge of LLMs ASAP. With a bias/focus to GPT.
Avoid being a link dump. Try to provide only valuable well tuned information.
Neural network links before starting with transformers.
import { z, ZodDate, ZodNumber, ZodBoolean, ZodString, ZodObject, ZodDiscriminatedUnion, ZodEnum, ZodArray, ZodTypeAny, ZodLiteral } from "zod"; | |
const textEncoder = new TextEncoder(); | |
const textDecoder = new TextDecoder(); | |
export async function serialize<T extends ZodTypeAny>(schema: T, data: z.infer<T>): Promise<ArrayBuffer> { | |
let accumulation = new Uint8Array(); | |
for await (const k of _serialize(schema, data, '')) { | |
accumulation = concatTypedArrays(accumulation, k); |
/** | |
* Force directed graph layout algorithm according to Fruchterman and Reingold's principle. | |
* The algorithm can be summarized as follows: | |
* algorithm SPRING(G:graph); | |
* place vertices of G in random locations; | |
* repeat N times | |
* calculate the force on each vertex; | |
* move the vertex c4 | |
* draw graph on canvas, plotter or any drawing tool. | |
* |
#include <time.h> // Robert Nystrom | |
#include <stdio.h> // @munificentbob | |
#include <stdlib.h> // for Ginny | |
#define r return // 2008-2019 | |
#define l(a, b, c, d) for (i y=a;y\ | |
<b; y++) for (int x = c; x < d; x++) | |
typedef int i;const i H=40;const i W | |
=80;i m[40][80];i g(i x){r rand()%x; | |
}void cave(i s){i w=g(10)+5;i h=g(6) | |
+3;i t=g(W-w-2)+1;i u=g(H-h-2)+1;l(u |
#,:: | |
AdjustScreenBrightness(-3) | |
Return | |
#.:: | |
AdjustScreenBrightness(3) | |
Return | |
AdjustScreenBrightness(step) { | |
service := "winmgmts:{impersonationLevel=impersonate}!\\.\root\WMI" |