Created
December 21, 2015 21:59
-
-
Save tixxit/987a9a3130b2b3fa914a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
sealed trait Step[K, V, T, I, O] { | |
def andThen[O2](that: Step[K, V, T, O2]): Step[K, V, T, O2] = | |
ComposedStep(this, that) | |
} | |
object Step { | |
type LeafSummerFunction[K, V, T, I, O] = (Map[Int, Tree[K, V, T]], Int, Int, I) => TraversableOnce[O] | |
type TrainingStep[K, V, T] = Step[K, V, T, Instance[K, V, T], Tree[K, V, T]] | |
trait LeafSummer[K, V, T, I, O] extends Step[K, V, T, I, O] { | |
def semigroup: Semigroup[O] | |
def apply(trees: Map[Int, Tree[K, V, T]], treeIndex: Int, leafIndex: Int, value: I): TraversableOnce[O] | |
} | |
case class ComposedStep[K, V, T, A, B, C](step1: Step[K, V, T, A, B], step2: Step[K, V, T, B, C]) extends Step[K, V, T, A, C] | |
def sumByLeaf[K, V, T, I, O](f: LeafSummerFunction[K, V, T, I, O])(implicit ev: Semigroup[O]): LeafSummer[K, V, T, I, O] = | |
new LeafSummer[K, V, T, I, O] { | |
def semigroup: Semigroup[O] = ev | |
def apply(trees: Map[Int, Tree[K, V, T]], treeIndex: Int, leafIndex: Int, value: I): TraversableOnce[O] = | |
f(trees, treeIndex, leafIndex, value) | |
} | |
def fromInstance[K, V, T, O](f: LeafSummerFunction[K, V, T, Instance[K, V, T], O]): LeafSummer[K, V, T, Instance[K, V, T], O] = | |
sumByLeaf[K, V, T, Instance[K, V, T], O](f) | |
def fromTree[K, V, T, I, O](f: (Tree[K, V, T], Int, I) => TraversableOnce[O]): LeafSummer[K, V, T, I, O] = | |
sumByLeaf[K, V, T, I, O] { (tress, treeIndex, leafIndex, input) => | |
trees.get(treeIndex).iterator.flatMap(f(_, leafIndex, input)) | |
} | |
def updateTargets[K, V, T: Semigroup](sampler: Sampler[K]): TrainingStep[K, V, T] = | |
fromInstance { (_, treeIndex, _, instance) => | |
val count = sampler.timesInTrainingSet(instance.id, instance.timestamp, treeIndex) | |
List.fill(count)(instance.target) | |
}.andThen(fromTree { (tree, leafIndex, t) => | |
// Imaginary, fast updateLeaf method. | |
tree.updateLeaf(leafIndex)(_.copy(target = t)) | |
}) | |
def expand[K, V, T](sampler: Sampler[K], stopper: Stopper[T], splitter: Splitter[V, T], evaluator: Evaluator[V, T]): TrainingStep[K, V, T] = | |
fromInstance { (trees, treeIndex, _, instance) => | |
for { | |
tree <- trees.get(treeIndex) | |
count = sampler.timesInTrainingSet(instance.id, instance.timestamp, treeIndex) | |
if count > 0 | |
leaf <- tree.leafFor(instance.features) | |
if stopper.shouldSplit(leaf.target) | |
} yield { | |
instance.features.collect { case (k, v) if sampler.includeFeature(k, treeIndex, leaf.index) => | |
k -> splitter.semigroup.intTimes(count, splitter.create(v, instance.target)) | |
} | |
} | |
} | |
.andThen(sumByLeaf { (trees, treeIndex, leafIndex, featureStats) => | |
for { | |
tree <- trees.get(treeIndex).toList | |
leaf <- tree.get(leafIndex).toList | |
split <- featureStats.map { case (feature, stats) => | |
splitter | |
.split(leaf.target, stats) | |
.map { rawSplit => | |
val (split, goodness) = evaluator.evaluate(rawSplit) | |
Max((feature, split, goodness)) | |
} | |
} | |
} yield split | |
} (Max.semigroup(Order.by(_._3)))) | |
.andThen(fromTree { (tree, leafIndex, maxSplit) => | |
// update tree with new target. | |
val (feature, split, _) = maxSplit.get | |
tree.updateLeaf(leafIndex) { leaf => | |
SplitNode(for { | |
(pred, target) <- split.predicates | |
} yield (feature, pred, LeafNode(0, target, ()))) | |
} | |
}) | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment