Compile ollama in Ubuntu 22.04:
# Install and activate oneapi
sudo apt install intel-basekit
source /opt/intel/oneapi/setvars.sh
# You may need to install other build dependencies ...
# sudo apt install apt-utils| """ | |
| ReAct agent example | |
| Adapted from: https://langchain-ai.github.io/langgraph/how-tos/tool-calling/ | |
| """ | |
| from langchain_core.tools import tool | |
| from langgraph.prebuilt import ToolNode | |
| from langgraph.graph import StateGraph, MessagesState | |
| from langgraph.prebuilt import ToolNode | |
| from langgraph.graph import StateGraph, MessagesState, START, END |
Compile ollama in Ubuntu 22.04:
# Install and activate oneapi
sudo apt install intel-basekit
source /opt/intel/oneapi/setvars.sh
# You may need to install other build dependencies ...
# sudo apt install apt-utils| """ | |
| Example adapted from https://github.com/aamini/introtodeeplearning lab2 part2 | |
| © MIT Introduction to Deep Learning | |
| http://introtodeeplearning.com | |
| """ | |
| import tensorflow as tf | |
| import matplotlib.pyplot as plt | |
| import functools | |
| import numpy as np |
| """ | |
| Simple Gantt chart implementation | |
| """ | |
| from datetime import datetime as dt | |
| import matplotlib | |
| import matplotlib.pyplot as plt | |
| from matplotlib.dates import date2num | |
| import matplotlib.dates as mdates | |
| import numpy |
| #!/bin/bash | |
| # generate mp4 animation from still images with ffmpeg. | |
| if [ $# != 2 ]; then | |
| echo "Usage: $(basename "$0") \"image/file/pattern_*.png\" output.mp4" | |
| exit -1 | |
| fi | |
| pattern=$1 | |
| outputfile=$2 |
| #!/bin/bash | |
| # loop through days of month given the first day | |
| startdate="2019-06-01" | |
| enddate=$(date -d "$startdate + 1 month" +"%Y-%m-%d") | |
| ndays=$(( ($(date -d "$enddate" +%s) - $(date -d "$startdate" +%s) )/(60*60*24) )) | |
| for i in $(seq 0 $(($ndays - 1)) ); do |
| """ | |
| Python argparse example demonstrating the most common usage options. | |
| """ | |
| import argparse | |
| parser = argparse.ArgumentParser( | |
| description='Description of the routine', | |
| # includes default values in help entries | |
| formatter_class=argparse.ArgumentDefaultsHelpFormatter, | |
| ) |
| #!/bin/bash | |
| # Install SLIM on rigilk cluster | |
| source ~/bin/activate_gcc6.4 | |
| source ~/bin/activate_cmake-3.11.4 | |
| source ~/bin/activate_openmpi.sh | |
| export BASEDIR=/home/karnat/sources/slim/install-script | |
| mkdir -p $BASEDIR |
| from thetis import * | |
| """ | |
| Computes a "strong" vertical integral of a field with pyop2 | |
| by integrating along the vertical 1D edges of the prism. | |
| """ | |
| def strong_integral_2d(source, output_2d, z_coords): | |
| """Computes strong integral of a P1DGxP1DG field onto P1DG 2D field""" |