Last active
June 3, 2019 01:06
-
-
Save tkf/014787f386e99b7b8b42683cfbd8da01 to your computer and use it in GitHub Desktop.
Calculating Lyapunov Exponents with ForwardDiff.jl and DifferentialEquations.jl
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
module LyapunovExponentsWithForwardDiff | |
using DifferentialEquations | |
using ForwardDiff | |
using ParameterizedFunctions | |
using ProgressMeter | |
using RecipesBase | |
type LyapunovExponentsResult | |
sol_p | |
sol_pt | |
values | |
end | |
Base.show(io::IO, res::LyapunovExponentsResult) = | |
print(io, "Lyapunov Exponents: ", res.values[:, end]) | |
type PhaseTangentParam | |
phase_dynamics | |
Jacobian | |
function PhaseTangentParam(phase_dynamics, x0) | |
new(phase_dynamics, | |
similar(x0, (length(x0), length(x0)))) | |
end | |
end | |
function tangent_dynamics(t, u, param, du) | |
ForwardDiff.jacobian!( | |
param.Jacobian, | |
(y, x) -> param.phase_dynamics(t, x, y), | |
(@view du[:, 1]), # phase space derivative goes here | |
(@view u[:, 1]), | |
) | |
A_mul_B!((@view du[:, 2:end]), param.Jacobian, (@view u[:, 2:end])) | |
end | |
function keepgoing!(sol) | |
sol.prob.u0 = sol(sol.prob.tspan[end]) | |
solve(sol.prob) | |
end | |
""" | |
S_n = ((n-1)/n) S_{n-1} + r_n / n | |
""" | |
@inline function lyap_add_R!(n, lyap, R) | |
a = (n - 1) / n | |
b = 1 - a | |
for i = 1:length(lyap) | |
lyap[i] = a * lyap[i] + b * log(R[i, i]) | |
end | |
end | |
""" A = A * diag(sgn) """ | |
@inline function A_mul_sign!(A, sgn) | |
for i = 1:size(A)[2] | |
if !sgn[i] | |
A[:, i] *= -1 | |
end | |
end | |
A | |
end | |
""" A = diag(sgn) * A """ | |
@inline function sign_mul_A!(sgn, A) | |
for i = 1:size(A)[1] | |
if !sgn[i] | |
A[i, :] *= -1 | |
end | |
end | |
A | |
end | |
""" sgn = sign(diag(A)) """ | |
@inline function sign_diag!(sgn, A) | |
for i = 1:size(A)[1] | |
sgn[i] = A[i, i] >= 0 | |
end | |
sgn | |
end | |
""" | |
`lyapunov_exponents(phase_dynamics, u0, t_chunk, num_tran, num_attr; ...)` | |
### Positional Arguments | |
* `phase_dynamics`: Definition of the phase space dynamics in the | |
inplace `(t, u, du)` format (as in `ODEProblem`). | |
* `u0`: Initial state for the phase space dynamics. | |
* `t_chunk`: Length of numerical integration between orthonormalization. | |
* `num_tran`: Number of iterations to through away to get rid of the | |
transient dynamics. | |
* `num_attr`: Number of orthonormalization steps for Lyapunov exponent | |
calculation (which is presumably done inside an attractor). | |
### Keyword Arguments | |
* `dim_lyap`: Number of Lyapunov exponents to be calculated. | |
Default to the full system dimension. | |
* `Q0`: The initial guess of the Gram-Schmidt "Lyapunov vectors". | |
Default to the identity matrix. | |
""" | |
function lyapunov_exponents( | |
phase_dynamics, | |
u0, | |
t_chunk, | |
num_tran, | |
num_attr; | |
dim_lyap=length(u0), | |
Q0=eye(length(u0), dim_lyap)) | |
# ODEProblem for dynamics in phase space | |
pprob = ODEProblem(phase_dynamics, u0, (0.0, t_chunk)) | |
psol = solve(pprob) | |
@showprogress 1 "Transient dynamics..." for _ in 2:num_tran | |
psol = keepgoing!(psol) | |
end | |
# ODEProblem for dynamics in phase & tangent spaces | |
pt0 = similar(u0, (length(u0), dim_lyap + 1)) | |
pt0[:, 1] = psol(psol.prob.tspan[end]) # phase space initial condition | |
pt0[:, 2:end] = Q0 # tangent space ... | |
ptparam = PhaseTangentParam(phase_dynamics, u0) | |
tprob = ODEProblem( | |
ParameterizedFunction(tangent_dynamics, ptparam), | |
pt0, | |
(0.0, t_chunk), | |
) | |
# H2 method in Geist, Parlitz, Lauterborn (1990) | |
lyap = similar(u0, dim_lyap) | |
lehist = similar(u0, (dim_lyap, num_attr)) | |
signR = Array(Bool, dim_lyap) | |
local tsol | |
xt = tprob.u0[:, 1] | |
Q = tprob.u0[:, 2:end] | |
@showprogress 1 "Computing Lyapunov exponents..." for n in 1:num_attr | |
tprob.u0[:, 1] = xt | |
tprob.u0[:, 2:end] = Q | |
tsol = solve(tprob) | |
uend = tsol(tsol.prob.tspan[end]) | |
xt = uend[:, 1] | |
P = uend[:, 2:end] | |
F = qrfact!(P) | |
Q = F[:Q][:, 1:dim_lyap] | |
R = F[:R] | |
sign_diag!(signR, R) # signR = diagm(sign(diag(R))) | |
A_mul_sign!(Q, signR) # Q = Q * signR | |
sign_mul_A!(signR, R) # R = signR * R | |
lyap_add_R!(n, lyap, R) | |
lehist[:, n] = lyap | |
end | |
lehist /= t_chunk | |
LyapunovExponentsResult( | |
psol, | |
tsol, | |
lehist, | |
) | |
end | |
""" Plot `LyapunovExponentsResult` via `RecipesBase`.""" | |
@recipe function f(res::LyapunovExponentsResult; | |
known=nothing) | |
dim_lyap = size(res.values)[1] | |
layout --> (dim_lyap, 1) | |
xscale --> :log10 | |
ylims = [[minimum(res.values[i, :]), | |
maximum(res.values[i, :])] | |
for i = 1:dim_lyap] | |
if known != nothing | |
for i = 1:dim_lyap | |
ylims[i][1] = min(ylims[i][1], known[i]) | |
ylims[i][2] = max(ylims[i][2], known[i]) | |
end | |
end | |
for i = 1:dim_lyap | |
ymin, ymax = ylims[i] | |
dy = ymax - ymin | |
ylims[i] = [ymin - dy * 0.05, | |
ymax + dy * 0.05] | |
end | |
for i in 1:dim_lyap | |
@series begin | |
subplot := i | |
label --> "" | |
ylabel := "LE$i" | |
ylim --> ylims[i] | |
res.values[i, :] | |
end | |
if known != nothing | |
@series begin | |
subplot := i | |
linetype := :hline | |
label --> "" | |
# repeating ylabel/ylim; otherwise they are ignored | |
ylabel := "LE$i" | |
ylim --> ylims[i] | |
[known[i]] | |
end | |
end | |
end | |
end | |
""" Some example dynamical systems and their known Lyapunov exponents. """ | |
module Examples | |
""" | |
Lorenz system. | |
* https://en.wikipedia.org/wiki/Lorenz_system | |
* http://sprott.physics.wisc.edu/chaos/comchaos.htm | |
* E. N. Lorenz, J. Atmos. Sci. 20, 130-141 (1963) | |
""" | |
function lorenz(t, u, du) | |
du[1] = 10.0(u[2]-u[1]) | |
du[2] = u[1]*(28.0-u[3]) - u[2] | |
du[3] = u[1]*u[2] - (8/3)*u[3] | |
end | |
lorenz_les_known = [0.9056, 0, -14.5723] | |
""" | |
Simplest piecewise linear dissipative chaotic flow. | |
* http://sprott.physics.wisc.edu/chaos/comchaos.htm | |
* S. J. Linz and J. C. Sprott, Phys. Lett. A 259, 240-245 (1999) | |
""" | |
function piecewise_linear(t, u, du) | |
du[1] = u[2] | |
du[2] = u[3] | |
du[3] = -0.6 * u[3] - u[2] - (u[1] > 0 ? u[1] : -u[1]) + 1 | |
end | |
piecewise_linear_les_known = [0.0362, 0, -0.6362] | |
end | |
end |
Hey, thanks for the interest. I just noticed your comment.
Hmm... I have no idea. As you said, it's possible that the version of the packages I used could be old by now. FYI, I was using Julia 0.5 and Plots 0.10.3.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Very nice notebook on the use of DifferentialEquations and ForwardDiff. I have a slight syntax problem with the two:
plot(sol, vars=(1,2,3), linewidth=0.5, label="")
Must be simple but Plots is constantly under revision. I get this error:
MethodError: Cannot
convert
an object of type Tuple{Float64} to an object of type Tuple{}This may have arisen from a call to the constructor Tuple{}(...),
since type constructors fall back to convert methods.
in macro expansion at .\broadcast.jl:129 [inlined]
in macro expansion at .\simdloop.jl:73 [inlined]
in macro expansion at .\broadcast.jl:123 [inlined]
in _broadcast!(::DiffEqBase.##71#72, ::Array{Tuple{Float64,Float64},1}, ::Tuple{Tuple{Bool},Tuple{Bool},Tuple{Bool}}, ::Tuple{Tuple{Int64},Tuple{Int64},Tuple{Int64}}, ::Tuple{Array{Float64,1},Array{Float64,1},Array{Float64,1}}, ::Type{Val{3}}) at .\broadcast.jl:117
in broadcast!(::Function, ::Array{Tuple{Float64,Float64},1}, ::Array{Float64,1}, ::Array{Float64,1}, ::Array{Float64,1}) at .\broadcast.jl:172
in broadcast_t(::Function, ::Type{T}, ::Array{Float64,1}, ::Vararg{Array{Float64,1},N}) at .\broadcast.jl:228
in broadcast(::Function, ::Array{Float64,1}, ::Array{Float64,1}, ::Array{Float64,1}, ::Vararg{Array{Float64,1},N}) at .\broadcast.jl:230
in solplot_vecs_and_labels(::Int64, ::Array{Tuple{DiffEqBase.##71#72,Int64,Int64,Int64},1}, ::Array{Array{Float64,1},1}, ::Array{Float64,1}, ::DiffEqBase.ODESolution{Float64,2,Array{Array{Float64,1},1},Void,Void,Array{Float64,1},Array{Array{Array{Float64,1},1},1},DiffEqBase.ODEProblem{Array{Float64,1},Float64,true,#lorenz,Void,UniformScaling{Int64}},OrdinaryDiffEq.Tsit5,OrdinaryDiffEq.InterpolationData{#lorenz,Array{Array{Float64,1},1},Array{Float64,1},Array{Array{Array{Float64,1},1},1},OrdinaryDiffEq.Tsit5Cache{Array{Float64,1},Array{Float64,1},Array{Float64,1},Array{Float64,1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float64}}}}, ::Bool, ::Void) at C:\Users\Denis.julia\v0.5\DiffEqBase\src\solutions\solution_interface.jl:300
in macro expansion at C:\Users\Denis.julia\v0.5\DiffEqBase\src\solutions\solution_interface.jl:94 [inlined]
in apply_recipe(::Dict{Symbol,Any}, ::DiffEqBase.ODESolution{Float64,2,Array{Array{Float64,1},1},Void,Void,Array{Float64,1},Array{Array{Array{Float64,1},1},1},DiffEqBase.ODEProblem{Array{Float64,1},Float64,true,#lorenz,Void,UniformScaling{Int64}},OrdinaryDiffEq.Tsit5,OrdinaryDiffEq.InterpolationData{#lorenz,Array{Array{Float64,1},1},Array{Float64,1},Array{Array{Array{Float64,1},1},1},OrdinaryDiffEq.Tsit5Cache{Array{Float64,1},Array{Float64,1},Array{Float64,1},Array{Float64,1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float64}}}}) at C:\Users\Denis.julia\v0.5\RecipesBase\src\RecipesBase.jl:238
in _process_userrecipes(::Plots.Plot{Plots.PyPlotBackend}, ::Dict{Symbol,Any}, ::Tuple{DiffEqBase.ODESolution{Float64,2,Array{Array{Float64,1},1},Void,Void,Array{Float64,1},Array{Array{Array{Float64,1},1},1},DiffEqBase.ODEProblem{Array{Float64,1},Float64,true,#lorenz,Void,UniformScaling{Int64}},OrdinaryDiffEq.Tsit5,OrdinaryDiffEq.InterpolationData{#lorenz,Array{Array{Float64,1},1},Array{Float64,1},Array{Array{Array{Float64,1},1},1},OrdinaryDiffEq.Tsit5Cache{Array{Float64,1},Array{Float64,1},Array{Float64,1},Array{Float64,1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float64}}}}}) at C:\Users\Denis.julia\v0.5\Plots\src\pipeline.jl:73
in _plot!(::Plots.Plot{Plots.PyPlotBackend}, ::Dict{Symbol,Any}, ::Tuple{DiffEqBase.ODESolution{Float64,2,Array{Array{Float64,1},1},Void,Void,Array{Float64,1},Array{Array{Array{Float64,1},1},1},DiffEqBase.ODEProblem{Array{Float64,1},Float64,true,#lorenz,Void,UniformScaling{Int64}},OrdinaryDiffEq.Tsit5,OrdinaryDiffEq.InterpolationData{#lorenz,Array{Array{Float64,1},1},Array{Float64,1},Array{Array{Array{Float64,1},1},1},OrdinaryDiffEq.Tsit5Cache{Array{Float64,1},Array{Float64,1},Array{Float64,1},Array{Float64,1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float64}}}}}) at C:\Users\Denis.julia\v0.5\Plots\src\plot.jl:171
in (::Plots.#kw##plot)(::Array{Any,1}, ::Plots.#plot, ::DiffEqBase.ODESolution{Float64,2,Array{Array{Float64,1},1},Void,Void,Array{Float64,1},Array{Array{Array{Float64,1},1},1},DiffEqBase.ODEProblem{Array{Float64,1},Float64,true,#lorenz,Void,UniformScaling{Int64}},OrdinaryDiffEq.Tsit5,OrdinaryDiffEq.InterpolationData{#lorenz,Array{Array{Float64,1},1},Array{Float64,1},Array{Array{Array{Float64,1},1},1},OrdinaryDiffEq.Tsit5Cache{Array{Float64,1},Array{Float64,1},Array{Float64,1},Array{Float64,1},OrdinaryDiffEq.Tsit5ConstantCache{Float64,Float64}}}}) at .<missing>:0