Created
January 17, 2020 15:18
-
-
Save tldrafael/df7fd7cbcc0b104f3bfd4f964031546e to your computer and use it in GitHub Desktop.
Generic example of input generator for Keras
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
class inputGen: | |
def __init__(self, batch_size, X, y, shuffle=True): | |
self.batch_size = batch_size | |
self.X = X | |
self.y = y | |
self.cursor = 0 | |
self.n_samples = X.shape[0] | |
self.ids_sequence = np.arange(X.shape[0]) | |
self.ids_batch = None | |
self.shuffle = shuffle | |
if shuffle: | |
self.shuffle_ids() | |
def shuffle_ids(self): | |
np.random.shuffle(self.ids_sequence) | |
def generator(self): | |
while True: | |
cursor_start = self.cursor | |
cursor_end = cursor_start + self.batch_size | |
if cursor_end > self.n_samples: | |
cursor_end = self.n_samples | |
cursor_start = np.max([0, cursor_end - self.batch_size]) | |
ids_batch = self.ids_sequence[cursor_start:cursor_end] | |
yield self.X[ids_batch], self.y[ids_batch] | |
self.update_cursor() | |
def update_cursor(self): | |
self.cursor += self.batch_size | |
if self.cursor > self.n_samples: | |
self.cursor = 0 | |
if self.shuffle: | |
self.shuffle_ids() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment