#Flags and scores in Tophat output
There are two functions 'bool rewrite_sam_record()', with different sets of parameters.
The first one is used for singletons the second for paired alignements:
| import pandas as pd | |
| import numpy as np | |
| from scipy.signal import find_peaks | |
| from collections import OrderedDict | |
| test = "GMM_logit_pvalue" | |
| df = pd.read_csv("out_nanocompore_results.tsv", sep="\t") | |
| df["Peak"] = 0 | |
| df = df[["pos", "chr", "genomicPos", "ref_id", "strand", "ref_kmer", "Peak", test]] | |
| transcripts = set(df["ref_id"]) | 
| from scipy.stats import chi2 | |
| import numpy as np | |
| def combine_pvalues_hou(pvalues, weights, cor_mat): | |
| """ Hou's method for the approximation for the distribution of the weighted | |
| combination of non-independent or independent probabilities. | |
| If any pvalue is nan, returns nan. | |
| https://doi.org/10.1016/j.spl.2004.11.028 | |
| pvalues: list of pvalues to be combined | |
| weights: the weights of the pvalues | 
| plotDispEsts2 <- function(dds){ | |
| require(dplyr) | |
| require(reshape2) | |
| require(ggplot2) | |
| as.data.frame(mcols(dds)) %>% | |
| select(baseMean, dispGeneEst, dispFit, dispersion) %>% | |
| melt(id.vars="baseMean") %>% | |
| filter(baseMean>0) %>% | |
| ggplot(aes(x=baseMean, y=value, colour=variable)) + | |
| geom_point(size=0.1) + | 
| # Converts a tab-separated file containing | |
| # DAVID's functional annotation results to | |
| # Markdown format | |
| # It reports: KEGG and GO terms along with | |
| # the gene symbol and name | |
| FILE= | |
| cut -f 1,2,5,6,7,9 $FILE | awk ' | |
| BEGIN{OFS=FS="\t"}NR>1{ | |
| print "#"$1 | 
| #!/bin/awk -f | |
| function logfactorial(n, f, i){ | |
| f=0 | |
| for(i=1;i<=n;i++){ | |
| f+=log(i) | |
| } | |
| return f | |
| } | |
| # m: Mean | 
| # Tunnel Display | |
| # This function sets up an ssh tunnel that forwards a local display port | |
| # back to the login node's display port. The tunnel is controlled by the | |
| # socket in $HOME/tmp/ssh-${LSB_SUB_HOST}-${HOSTNAME}-${DISPLAY_NUMBER}. | |
| # The ssh tunnel is in the background and keeps running even after the | |
| # interactive shell is closed, thus preventing completion of the LSF job. | |
| # To avoid this, we setup a trap on SIGINT SIGTERM EXIT that uses the ssh | |
| # control socket to signal the tunnel to exit. | |
| tund(){ | |
| if [[ -n $LSB_JOBID ]]; then | 
I hereby claim:
To claim this, I am signing this object:
| ```{r set-options} | |
| my_hook <- function(x, options) { | |
| if (options$fig.show == 'animate') return(hook_plot_html(x, options)) | |
| "%n%" <- knitr:::"%n%" | |
| base = opts_knit$get('base.url') %n% '' | |
| cap = knitr:::.img.cap(options) | |
| if (is.null(w <- options$out.width) & is.null(h <- options$out.height) & | |
| is.null(s <- options$out.extra) & options$fig.align == 'default') { | |
| return(sprintf('{#fig:%s} ', cap, base, knitr:::.upload.url(x), options$label)) | 
| tanimoto <- function(x, similarity=F) { | |
| res<-sapply(x, function(x1){ | |
| sapply(x, function(x2) {i=length(which(x1 & x2)) / length(which(x1 | x2)); ifelse(is.na(i), 0, i)}) | |
| }) | |
| if(similarity==T) return(res) | |
| else return(1-res) | |
| } | |
| x <- data.frame(Samp1=c(0,0,0,1,1,1,0,0,1), Samp2=c(1,1,1,1,1,1,0,0,1), Samp3=c(1,0,0,1,0,0,0,0,0), Samp4=c(1,1,1,1,1,1,1,1,1)) | |
| tanimoto(x) |