Skip to content

Instantly share code, notes, and snippets.

@tleonardi
tleonardi / david2html
Created January 27, 2017 11:36
Converts DAVID functional annotations to html
# Converts a tab-separated file containing
# DAVID's functional annotation results to
# Markdown format
# It reports: KEGG and GO terms along with
# the gene symbol and name
FILE=
cut -f 1,2,5,6,7,9 $FILE | awk '
BEGIN{OFS=FS="\t"}NR>1{
print "#"$1
@tleonardi
tleonardi / plotDispEsts2.R
Created August 29, 2018 13:15
Replacement for DESeq2 plotDispEsts() tha uses ggplot2
plotDispEsts2 <- function(dds){
require(dplyr)
require(reshape2)
require(ggplot2)
as.data.frame(mcols(dds)) %>%
select(baseMean, dispGeneEst, dispFit, dispersion) %>%
melt(id.vars="baseMean") %>%
filter(baseMean>0) %>%
ggplot(aes(x=baseMean, y=value, colour=variable)) +
geom_point(size=0.1) +
@tleonardi
tleonardi / combine_pvalues_hou.py
Last active October 17, 2019 14:39
Hou's method for the approximation for the distribution of the weighted combination of non-independent or independent probabilities.
from scipy.stats import chi2
import numpy as np
def combine_pvalues_hou(pvalues, weights, cor_mat):
""" Hou's method for the approximation for the distribution of the weighted
combination of non-independent or independent probabilities.
If any pvalue is nan, returns nan.
https://doi.org/10.1016/j.spl.2004.11.028
pvalues: list of pvalues to be combined
weights: the weights of the pvalues
import pandas as pd
import numpy as np
from scipy.signal import find_peaks
from collections import OrderedDict
test = "GMM_logit_pvalue"
df = pd.read_csv("out_nanocompore_results.tsv", sep="\t")
df["Peak"] = 0
df = df[["pos", "chr", "genomicPos", "ref_id", "strand", "ref_kmer", "Peak", test]]
transcripts = set(df["ref_id"])