Created
January 25, 2017 03:43
-
-
Save tmattio/74528673d271e3131c2ea2a2adaf5c8c to your computer and use it in GitHub Desktop.
A google test that ensure that an image is not corrupted when passing it through a tbb flow graph
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#include <gtest/gtest.h> | |
#include <tbb/flow_graph.h> | |
#include <opencv2/core.hpp> | |
using namespace tbb::flow; | |
/** | |
* Simple functor that return the inverted matrix. | |
*/ | |
struct pass_image { | |
cv::Mat operator()(cv::Mat image) { | |
cv::bitwise_not(image, image); | |
return image; | |
} | |
}; | |
/** | |
* Generate a random images of size 2000x2000. | |
* This will stop when it has generated the number of images passed in the | |
* ctor. | |
*/ | |
class generate_image { | |
public: | |
explicit generate_image(int max_count) : max_count_(max_count) {} | |
bool operator()(cv::Mat &image) { | |
if (count_ < max_count_) { | |
cv::Mat1b mat(2000, 2000); | |
cv::randu(mat, cv::Scalar(0), cv::Scalar(255)); | |
image = mat; | |
++count_; | |
return true; | |
} | |
return false; | |
} | |
private: | |
int count_ = 0; | |
int max_count_; | |
}; | |
/** | |
* Test that we can pass a cv::Mat in a tbb graph without any corruption. | |
* This will create a graph that generate an image, pass it through some non | |
* corrupting processing functions and compare that the final result is the | |
* same as the input. | |
*/ | |
TEST(tbb, non_currupted) { | |
for (int i = 0; i < 10; ++i) { | |
tbb::flow::graph g; | |
source_node<cv::Mat> source_node(g, generate_image(50)); | |
function_node<cv::Mat, cv::Mat> pass_image_node_1(g, unlimited, | |
pass_image()); | |
function_node<cv::Mat, cv::Mat> pass_image_node_2(g, unlimited, | |
pass_image()); | |
function_node<cv::Mat, cv::Mat> pass_image_node_3(g, unlimited, | |
pass_image()); | |
function_node<cv::Mat, cv::Mat> pass_image_node_4(g, unlimited, | |
pass_image()); | |
function_node<cv::Mat, cv::Mat> pass_image_node_5(g, unlimited, | |
pass_image()); | |
join_node<tuple<cv::Mat, cv::Mat>> join_node(g); | |
function_node<tuple<cv::Mat, cv::Mat>> compare_node( | |
g, unlimited, [](const tuple<cv::Mat, cv::Mat> &t) { | |
cv::Mat diff; | |
cv::compare(std::get<0>(t), std::get<1>(t), diff, cv::CMP_NE); | |
auto difference = cv::countNonZero(diff); | |
ASSERT_EQ(difference, 0); | |
}); | |
make_edge(source_node, pass_image_node_1); | |
make_edge(pass_image_node_1, pass_image_node_2); | |
make_edge(pass_image_node_2, pass_image_node_3); | |
make_edge(pass_image_node_3, pass_image_node_4); | |
make_edge(pass_image_node_4, input_port<0>(join_node)); | |
make_edge(source_node, input_port<1>(join_node)); | |
make_edge(join_node, compare_node); | |
g.wait_for_all(); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment