Created
August 8, 2013 02:32
-
-
Save tmhedberg/6180944 to your computer and use it in GitHub Desktop.
Lists with type-encoded length
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# LANGUAGE DataKinds, GADTs, KindSignatures, TemplateHaskell #-} | |
-- | Lists with type-encoded length | |
-- | |
-- Includes TH macros for concise usage of Peano naturals at type and term | |
-- level. | |
-- | |
-- Examples: | |
-- | |
-- >>> :t Nil | |
-- Nil :: LList 'Z a | |
-- | |
-- >>> :t Cons () Nil | |
-- Cons () Nil :: LList ('S 'Z) () | |
-- | |
-- >>> head $ Cons () Nil | |
-- () | |
-- | |
-- >>> head Nil | |
-- Couldn't match type 'Z with 'S n0 ... | |
-- | |
-- >>> head $ replicate $(singNat 20) () | |
-- () | |
module Data.LList ( | |
-- * Peano naturals | |
Nat (..) | |
, NatSing (..) | |
-- * LList type | |
, LList (..) | |
-- * Type-safe utility functions | |
, head | |
, replicate | |
-- * Convenience macros | |
, typeNat | |
, termNat | |
, singNat | |
) where | |
import Prelude hiding (head, replicate) | |
import Language.Haskell.TH | |
data Nat = Z | S Nat | |
-- | Peano singletons | |
data NatSing (n :: Nat) where ZS :: NatSing Z | |
SS :: NatSing n -> NatSing (S n) | |
data LList (len :: Nat) a where Nil :: LList Z a | |
Cons :: a -> LList len a -> LList (S len) a | |
-- | Safe head function | |
-- | |
-- Calling this on an empty list is a type error. | |
head :: LList (S n) a -> a | |
head (Cons x _) = x | |
-- | Like 'Prelude.replicate' | |
replicate :: NatSing n -- ^ Length as a singleton | |
-> a -- ^ Element to replicate | |
-> LList n a | |
replicate ZS _ = Nil | |
replicate (SS n) x = Cons x $ replicate n x | |
-- | Macro for generating Peano types | |
typeNat :: Int -> Q Type | |
typeNat = natMacro AppT PromotedT 'S 'Z | |
-- | Macro for generating Peano terms | |
termNat :: Int -> Q Exp | |
termNat = natMacro AppE ConE 'S 'Z | |
-- | Macro for generating Peano singletons | |
singNat :: Int -> Q Exp | |
singNat = natMacro AppE ConE 'SS 'ZS | |
natMacro :: (e -> e -> e) -> (Name -> e) -> Name -> Name -> Int -> Q e | |
natMacro app con s z n = return $ iterate (app $ con s) (con z) !! n |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment