Created
February 7, 2024 07:46
-
-
Save tmwatchanan/9ca252e83370b01f48666f53a16fb01a to your computer and use it in GitHub Desktop.
Simulated annealing algorithm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import math | |
| import random | |
| from functools import partial | |
| from typing import Callable, Sequence | |
| class System: | |
| def __init__(self) -> None: | |
| pass | |
| def generate_initial_solution(self) -> list[float]: | |
| return [3] | |
| def energy(self, w: list[float]) -> float: | |
| return w[0] ** 2 | |
| def arithmetic_cooling( | |
| max_temperature: float, iterations: int, alpha: float = 0.01 | |
| ) -> float: | |
| return max_temperature - (iterations * alpha) | |
| def geometric_cooling( | |
| max_temperature: float, iterations: int, alpha: float = 0.01 | |
| ) -> float: | |
| return max_temperature * (alpha**iterations) | |
| class SimulatedAnnealing: | |
| def __init__( | |
| self, | |
| model: System, | |
| temperatures: Sequence[float] = (0, 300), | |
| perturbation_alpha: float = 0.1, | |
| temperature_fraction: float = 1, | |
| cooling_schedule: Callable = arithmetic_cooling, | |
| ) -> None: | |
| self.model = model | |
| self.min_temperature = temperatures[0] | |
| self.max_temperature = temperatures[1] | |
| self.perturbation_alpha = perturbation_alpha | |
| self.temperature_fraction = temperature_fraction | |
| self.cooling_schedule = cooling_schedule | |
| def compute_energy(self, solution: list[float]) -> float: | |
| return self.model.energy(solution) | |
| def generate_neighbor(self, solution: list[float]) -> list[float]: | |
| neighbor = solution[:] | |
| for i in range(len(solution)): | |
| neighbor[i] = solution[i] + random.uniform( | |
| -self.perturbation_alpha, self.perturbation_alpha | |
| ) | |
| return neighbor | |
| def metropolis(self, diff_energy: float, temperature: float) -> bool: | |
| if diff_energy < 0: | |
| return True | |
| return random.uniform(0, 1) < math.exp(-diff_energy / temperature) | |
| def optimize(self) -> list[float]: | |
| temperature = self.max_temperature | |
| solution = self.model.generate_initial_solution() | |
| energy = self.compute_energy(solution) | |
| iteration = 1 | |
| while temperature > self.min_temperature: | |
| new_solution = self.generate_neighbor(solution) | |
| new_energy = self.compute_energy(new_solution) | |
| diff_energy = new_energy - energy | |
| if self.metropolis(diff_energy, temperature): | |
| solution = new_solution[:] | |
| energy = new_energy | |
| temperature = self.cooling_schedule(self.max_temperature, iteration) | |
| print(f"[it={iteration}] energy = {energy}, temperature = {temperature}") | |
| iteration += 1 | |
| return solution | |
| if __name__ == "__main__": | |
| model = System() | |
| sa = SimulatedAnnealing( | |
| model, | |
| temperatures=(0, 1), | |
| cooling_schedule=partial(geometric_cooling, alpha=0.8), | |
| ) | |
| final_solution: list[float] = sa.optimize() | |
| print("final_solution", final_solution) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment