Created
October 15, 2017 19:28
-
-
Save tnbred/f136c2bc40815517e0aa1139bd2060ee to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import tensorflow as tf | |
import pandas as pd | |
import numpy as np | |
import xgboost as xgb | |
import json | |
from datetime import timedelta | |
from math import log, ceil | |
from sklearn.metrics import log_loss | |
from sklearn.grid_search import GridSearchCV | |
from sklearn.preprocessing import MinMaxScaler | |
from sklearn.preprocessing import OneHotEncoder | |
from sklearn.utils import shuffle | |
num_examples = 100000 | |
split = 0.2 | |
num_features = 1 | |
def generate_input_data(num_examples, num_features): | |
features = [] | |
labels = [] | |
for i in xrange(num_examples): | |
features.append(np.random.rand(num_features) * np.random.randint(1, 10) + np.random.rand(num_features)) | |
if np.random.randint(101) > 90: | |
features[i-1][np.random.randint(num_features)] = 0 | |
hard = ceil(np.sum(features[i-1])) % 2 | |
easy = 0 | |
if features[i-1][0] > 3: | |
easy = 1 | |
labels.append(easy) | |
df = pd.concat( | |
[ | |
pd.DataFrame(features), | |
pd.Series(labels).rename('labels') | |
], | |
axis=1, | |
) | |
return df | |
def one_hot_encoding(train_df): | |
#TODO: handle categorical feature one hot encoding. | |
return 0, 0 | |
def scale_data(train_df, test_df): | |
categorical_columns, encoding = one_hot_encoding(train_df) | |
scaler = MinMaxScaler(feature_range=(0,1)) | |
scaler.fit(train_df.drop(['labels'], axis=1)) | |
train_df = pd.concat( | |
[ | |
pd.DataFrame(scaler.transform(train_df.drop('labels', axis=1))), | |
train_df['labels'] | |
], | |
axis=1, | |
) | |
test_df = pd.concat( | |
[ | |
pd.DataFrame(scaler.transform(test_df.drop('labels', axis=1))), | |
test_df['labels'] | |
], | |
axis=1, | |
) | |
return train_df, test_df | |
def preprocess_data(train_df, test_df): | |
all_dfs = [train_df, test_df] | |
features = set() | |
for df in all_dfs: | |
features |= set(df.columns) | |
for df in all_dfs: | |
for f in features: | |
if f not in df.columns: | |
df[f] = 0.0 | |
for df in all_dfs: | |
df.sort_index(axis=1, inplace=True) | |
train_df, test_df = scale_data(train_df, test_df) | |
train_df = shuffle(train_df).reset_index(drop=True) | |
return train_df, test_df | |
def get_data(num_examples, split): | |
train_df = generate_input_data(num_examples, num_features) | |
test_df = generate_input_data(int(ceil(num_examples*split)), num_features) | |
return preprocess_data(train_df, test_df) | |
def get_batch(df, batch_size, epoch): | |
start = batch_size*epoch-batch_size | |
end = batch_size*epoch | |
if end > len(df): | |
end = len(df) | |
size = end - start | |
batch_x = df.drop('labels', axis=1)[start:end].as_matrix() | |
batch_y = df['labels'][start:end].as_matrix().reshape(size, 1) | |
return batch_x, batch_y | |
train_df, test_df = get_data(num_examples, split) | |
n_hidden_1 = 8 | |
n_hidden_2 = 4 | |
learning_rate = 0.01 | |
batch_size = 500 | |
num_epochs = 200 | |
display_epoch = 50 | |
def neural_net(x): | |
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1']) | |
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2']) | |
out_layer = tf.matmul(layer_2, weights['out']) + biases['out'] | |
return out_layer | |
weights = { | |
'h1': tf.Variable(tf.random_normal([num_features, n_hidden_1])), | |
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), | |
'out': tf.Variable(tf.random_normal([n_hidden_2, 1])) | |
} | |
biases = { | |
'b1': tf.Variable(tf.random_normal([n_hidden_1])), | |
'b2': tf.Variable(tf.random_normal([n_hidden_2])), | |
'out': tf.Variable(tf.random_normal([1])) | |
} | |
X = tf.placeholder(tf.float32, shape=(None, num_features)) | |
Y = tf.placeholder(tf.float32, shape=(None, 1)) | |
logits = neural_net(X) | |
loss_op = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits, labels=Y)) | |
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) | |
train_op = optimizer.minimize(loss_op) | |
predictions = tf.sigmoid(logits) | |
predicted_class = tf.greater(predictions, 0.5) | |
correct = tf.equal(predicted_class, tf.equal(Y,1.0)) | |
accuracy = tf.reduce_mean( tf.cast(correct, 'float') ) | |
with tf.Session() as sess: | |
sess.run(tf.global_variables_initializer()) | |
sess.run(tf.local_variables_initializer()) | |
for epoch in range(1, num_epochs + 1): | |
batch_x, batch_y = get_batch(train_df, batch_size, epoch) | |
sess.run(train_op, feed_dict={X: batch_x, Y: batch_y}) | |
if epoch % display_epoch == 0 or epoch == 1: | |
loss, acc , pred, fff= sess.run([loss_op, accuracy, predictions, logits], | |
feed_dict={X: batch_x, | |
Y: batch_y}) | |
c = ', '.join('{}={}'.format(*t) for t in zip(pred, batch_y)) | |
print("[{}] Batch loss={:.4f}, Accuracy={:.5f}, Logits vs labels= {}".format(epoch, loss, acc, c)) | |
print("Optimization Finished!") | |
batch_x, batch_y = get_batch(test_df, batch_size, 1) | |
print("Testing Accuracy:", \ | |
sess.run(accuracy, feed_dict={X: batch_x, | |
Y: batch_y})) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment