Skip to content

Instantly share code, notes, and snippets.

@tokestermw
Last active April 9, 2019 08:41
Show Gist options
  • Save tokestermw/45c1c820a8fa67d8e17e3079d6aa2a65 to your computer and use it in GitHub Desktop.
Save tokestermw/45c1c820a8fa67d8e17e3079d6aa2a65 to your computer and use it in GitHub Desktop.
Using deep learning to approximate a B-Tree index from this paper: https://arxiv.org/abs/1712.01208 (The Case for Learned Index Structures)
import click
import torch
import torch.autograd
import torch.nn.functional as F
from torch.autograd import Variable
import os
import random
import math
from bisect import bisect_left
url_to_english_words = \
'https://raw.githubusercontent.com/dwyl/english-words/master/words.txt'
def get_english_words():
if not os.path.isfile('words.txt'):
import subprocess
subprocess.call(['wget', url_to_english_words])
with open('words.txt') as f:
english_words = []
for line in f:
english_words.append(line.strip())
return english_words
def exponential_distribution(lambda_=1.0):
u = random.random()
x = - math.log(u) / lambda_
return x
def sorted_numbers(N=1000):
# TODO: more complicated list
numbers = [exponential_distribution() for _ in range(N)]
numbers = sorted(numbers)
def random_fun():
x = random.choice(numbers)
y = numbers.index(x)
return x, y
return numbers, random_fun
def sorted_hash_map(N=1000):
# ignore the map for now, just get random hashes
english_words = get_english_words()
english_words = english_words[:N]
hashes = [hash(word) for word in english_words]
hashes = sorted(hashes) # pseudo hash map
def random_fun():
index = random.randint(0, N - 1)
word = english_words[index]
hash_ = hashes[index]
return word, index
return hashes, random_fun
def get_model(dim=128):
model = torch.nn.Sequential(
torch.nn.Linear(1, dim),
torch.nn.ReLU(),
torch.nn.Linear(dim, 1),
)
return model
def _featurize(x):
return torch.unsqueeze(Variable(torch.Tensor(x)), 1)
def naive_index_search(x, numbers):
for idx, n in enumerate(numbers):
if n > x:
break
return idx - 1
def bisect_search(x, numbers):
i = bisect_left(numbers, x)
if i:
return i - 1
raise ValueError
@click.command()
@click.argument('mode', type=click.Choice(['ranged', 'hash', 'bloom']))
@click.option('--n', default=1000, type=int,
help='Size of sorted array.')
@click.option('--lr', default=9e-3, type=float,
help='Learning rate of DL model (only parameter that matters!)')
def main(mode, n, lr):
"""CLI for creating machine learned index.
"""
N = n
if mode == 'ranged':
numbers, random_fun = sorted_numbers(N)
elif mode == 'hash':
raise NotImplementedError
elif mode == 'bloom':
raise NotImplementedError
model = get_model()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
try:
while True:
batch_x = []; batch_y = []
for _ in range(32):
x, y = random_fun()
batch_x.append(x)
batch_y.append(y)
batch_x = _featurize(batch_x)
batch_y = _featurize(batch_y)
pred = model(batch_x) * N
output = F.smooth_l1_loss(pred, batch_y)
loss = output.data[0]
print(loss)
optimizer.zero_grad()
output.backward()
optimizer.step()
except KeyboardInterrupt:
pass
def _test(x):
pred = model(_featurize([x])) * N
# idx = naive_index_search(x, numbers)
idx = bisect_search(x, numbers)
print('Real:', idx, 'Predicted:', float(pred.data[0]))
_test(1.5)
import pdb
pdb.set_trace()
if __name__ == '__main__':
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment