Created
January 19, 2021 13:31
-
-
Save tomMoral/d5fa252327d66091daa799fc081ebd04 to your computer and use it in GitHub Desktop.
Simulate Marcenko-Pastur Law
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from matplotlib import rc | |
# activate latex text rendering | |
rc('text', usetex=True) | |
if __name__ == "__main__": | |
sig = 1 | |
n_hist = 3 | |
max_iter = 5000 | |
list_m = np.logspace(2, 3, n_hist, dtype=int) | |
vals, e_min, e_max = {}, {}, {} | |
for alpha in [0.25, 1, 4]: | |
vals[alpha], e_min[alpha], e_max[alpha] = {}, {}, {} | |
# Simulate distributions | |
for m in list_m: | |
n = int(m / alpha) | |
vals[alpha][m], e_min[alpha][m], e_max[alpha][m] = [], [], [] | |
for i in range(max_iter): | |
print(f'iteration m={m}, n={n}: {i / max_iter:6.1%}\r', | |
end='', flush=True) | |
X = sig * np.random.randn(m, n) | |
Y = X.dot(X.T) / n | |
e, _ = np.linalg.eigh(Y) | |
vals[alpha][m].extend(e) | |
e_min[alpha][m].append(min(e[abs(e) > 1e-10])) | |
e_max[alpha][m].append(max(e)) | |
print(f'iteration m={m}, n={n}: {"done":6}') | |
# Setup plot | |
fig = plt.figure() | |
spec = plt.GridSpec( | |
ncols=2, nrows=3, height_ratios=(0.1, 0.45, 0.45), | |
figure=fig | |
) | |
ax_full = fig.add_subplot(spec[1, :]) | |
ax_min = fig.add_subplot(spec[2, 0]) | |
ax_max = fig.add_subplot(spec[2, 1]) | |
# Marchenko-Pastur constants and density | |
l_min = (sig * (1 - np.sqrt(alpha))) ** 2 | |
l_max = (sig * (1 + np.sqrt(alpha))) ** 2 | |
t = np.linspace(l_min, l_max, 1000) | |
nu = np.sqrt((l_max - t) * (t - l_min)) / (2 * np.pi * alpha * t) | |
# Plot histograms | |
bins = 100 | |
bins_min, bins_max = bins, bins | |
for c, m in enumerate(list_m): | |
ax_full.hist( | |
vals[alpha][m], bins=bins, color=f'C{c}', | |
alpha=0.5, density=True | |
) | |
_, bins_min, _ = ax_min.hist( | |
np.array(e_min[alpha][m]) - l_min, bins=bins_min, | |
alpha=0.5, density=True | |
) | |
_, bins_max, _ = ax_max.hist( | |
np.array(e_max[alpha][m]) - l_max, bins=bins_max, | |
alpha=0.5, density=True | |
) | |
# Plot density function | |
ax_full.plot(t, nu, color='k') | |
ax_full.set_title(r"Eigenvalues $\lambda$") | |
if alpha == 4: | |
ax_full.set_ylim(0, .3) | |
# Plot theoretical values | |
for ax, title in [(ax_min, r'$\lambda_{min} - \lambda_-$'), | |
(ax_max, r'$\lambda_{max} - \lambda_+$')]: | |
ylim = np.array(ax.get_ylim()) | |
ax.vlines(0, *ylim, color='k', ls='--') | |
ax.set_ylim(ylim) | |
ax.set_title(title) | |
ax_legend = fig.add_subplot(spec[0, :]) | |
leg = ax_legend.legend( | |
[plt.Rectangle((0, 0), 1, 1, color=f'C{c}', alpha=0.5) | |
for c in range(len(list_m))], | |
[f'{n}' for n in list_m], loc='center', | |
bbox_to_anchor=(0, 0, 1, 1), ncol=len(list_m), | |
title=r'\textbf{\underline{Sample size $n$}}' | |
) | |
leg._legend_box.align = "left" | |
ax_legend.set_axis_off() | |
plt.tight_layout() | |
plt.savefig(f'marchenko_pastur_alpha={alpha}.pdf', dpi=300) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment