-
-
Save tombsar/716134ec71d1b8c1b530 to your computer and use it in GitHub Desktop.
C++ port of KdotJPG's OpenSimplexNoise in Java. A self-contained set of functions for generating visually axis-decorrelated, coherent noise from a simplectic honeycomb.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* OpenSimplex (Simplectic) Noise in C++ | |
* by Arthur Tombs | |
* | |
* Modified 2015-01-08 | |
* | |
* This is a derivative work based on OpenSimplex by Kurt Spencer: | |
* https://gist.github.com/KdotJPG/b1270127455a94ac5d19 | |
* | |
* Anyone is free to make use of this software in whatever way they want. | |
* Attribution is appreciated, but not required. | |
* | |
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. | |
* IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR | |
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, | |
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR | |
* OTHER DEALINGS IN THE SOFTWARE. | |
*/ | |
#ifndef OPENSIMPLEXNOISE_HH | |
#define OPENSIMPLEXNOISE_HH | |
#include <cmath> | |
#if __cplusplus < 201103L | |
#pragma message("Info: Your compiler does not claim C++11 support. Some features may be unavailable.") | |
#else | |
#define OSN_USE_CSTDINT | |
#define OSN_USE_STATIC_ASSERT | |
#endif | |
#ifdef OSN_USE_CSTDINT | |
// cstdint is required for the int64_t type | |
#include <cstdint> | |
#else | |
#pragma message("Info: Not using <cstdint> for fixed-width integral types. To enable this feature, define OSN_USE_CSTDINT before including this header.") | |
// cstdlib is required for the srand and rand functions | |
#include <cstdlib> | |
#endif | |
#ifdef OSN_USE_STATIC_ASSERT | |
// type_traits is required for the is_floating_point function | |
#include <type_traits> | |
#endif | |
namespace OSN { | |
#ifdef OSN_USE_CSTDINT | |
typedef uint_fast8_t OSN_BYTE; | |
#ifndef OSN_INT_TYPE | |
#define OSN_INT_TYPE int64_t | |
#endif | |
#else | |
typedef unsigned char OSN_BYTE; | |
#ifndef OSN_INT_TYPE | |
#define OSN_INT_TYPE long | |
#endif | |
#endif | |
typedef OSN_INT_TYPE inttype; | |
namespace { | |
// This function seems to be faster than std::pow(x, 4) in all cases | |
template <typename T> | |
inline T pow4 (T x) { | |
x *= x; | |
return x*x; | |
} | |
template <typename T> | |
inline T pow2 (T x) { | |
return x*x; | |
} | |
template <typename T> | |
inline inttype fastFloori (T x) { | |
inttype ip = (inttype)x; | |
#ifndef OSN_ALWAYS_POSITIVE | |
if (x < 0.0) --ip; | |
#endif | |
return ip; | |
} | |
} | |
class NoiseBase { | |
protected: | |
int perm [256]; | |
// Empty constructor to allow child classes to set up perm themselves. | |
NoiseBase (void) {} | |
#ifdef OSN_USE_CSTDINT | |
// Perform one step of the Linear Congruential Generator algorithm. | |
inline static void LCG_STEP (int64_t & x) { | |
// Magic constants are attributed to Donald Knuth's MMIX implementation. | |
static const int64_t MULTIPLIER = 6364136223846793005LL; | |
static const int64_t INCREMENT = 1442695040888963407LL; | |
x = ((x * MULTIPLIER) + INCREMENT); | |
} | |
// Initializes the class using a permutation array generated from a 64-bit seed. | |
// Generates a proper permutation (i.e. doesn't merely perform N successive | |
// pair swaps on a base array). | |
// Uses a simple 64-bit LCG. | |
NoiseBase (int64_t seed) { | |
int source [256]; | |
for (int i = 0; i < 256; ++i) { source[i] = i; } | |
LCG_STEP(seed); | |
LCG_STEP(seed); | |
LCG_STEP(seed); | |
for (int i = 255; i >= 0; --i) { | |
LCG_STEP(seed); | |
int r = (int)((seed + 31) % (i + 1)); | |
if (r < 0) { r += (i + 1); } | |
perm[i] = source[r]; | |
source[r] = source[i]; | |
} | |
} | |
#else | |
// Initializes the class using a permutation array generated from a 32-bit seed. | |
// Generates a proper permutation (i.e. doesn't merely perform N successive | |
// pair swaps on a base array). | |
NoiseBase (long seed) { | |
int source [256]; | |
for (int i = 0; i < 256; ++i) { source[i] = i; } | |
srand(seed); | |
for (int i = 255; i >= 0; --i) { | |
int r = (int)(rand() % (i + 1)); | |
perm[i] = source[r]; | |
source[r] = source[i]; | |
} | |
} | |
#endif | |
NoiseBase (const int * p) { | |
// Copy the supplied permutation array into this instance | |
for (int i = 0; i < 256; ++i) { perm[i] = p[i]; } | |
} | |
}; | |
template <int N> | |
class Noise : public NoiseBase { | |
}; | |
// 2D Implementation of the OpenSimplexNoise generator. | |
template <> | |
class Noise <2> : public NoiseBase { | |
private: | |
static const int gradients [16]; | |
template <typename T> | |
inline T extrapolate (inttype xsb, inttype ysb, T dx, T dy) const { | |
unsigned int index = perm[(perm[xsb & 0xFF] + ysb) & 0xFF] & 0x0E; | |
return gradients[index] * dx + | |
gradients[index + 1] * dy; | |
} | |
template <typename T> | |
inline T extrapolate (inttype xsb, inttype ysb, T dx, T dy, T (&v) [2]) const { | |
unsigned int index = perm[(perm[xsb & 0xFF] + ysb) & 0xFF] & 0x0E; | |
return (v[0] = gradients[index]) * dx + | |
(v[1] = gradients[index + 1]) * dy; | |
} | |
public: | |
#ifdef OSN_USE_CSTDINT | |
Noise (int64_t seed = 0LL) : NoiseBase (seed) {} | |
#else | |
Noise (long seed = 0L) : NoiseBase (seed) {} | |
#endif | |
Noise (const int * p) : NoiseBase (p) {} | |
template <typename T> | |
T eval (T x, T y) const { | |
#ifdef OSN_USE_STATIC_ASSERT | |
static_assert(std::is_floating_point<T>::value, "OpenSimplexNoise can only be used with floating-point types"); | |
#endif | |
static const T STRETCH_CONSTANT = (T)((1.0 / std::sqrt(2.0 + 1.0) - 1.0) * 0.5); | |
static const T SQUISH_CONSTANT = (T)((std::sqrt(2.0 + 1.0) - 1.0) * 0.5); | |
static const T NORM_CONSTANT = (T)(1.0 / 47.0); | |
inttype xsb, ysb, xsv_ext, ysv_ext; | |
T dx0, dy0, dx_ext, dy_ext; | |
T xins, yins; | |
// Parameters for the four contributions | |
T contr_m [4], contr_ext [4]; | |
{ | |
// Place input coordinates on a grid. | |
T stretchOffset = (x + y) * STRETCH_CONSTANT; | |
T xs = x + stretchOffset; | |
T ys = y + stretchOffset; | |
// Floor to get grid coordinates of rhombus super-cell origin. | |
#ifdef __FAST_MATH__ | |
T xsbd = std::floor(xs); | |
T ysbd = std::floor(ys); | |
xsb = (inttype)xsbd; | |
ysb = (inttype)ysbd; | |
#else | |
xsb = fastFloori(xs); | |
ysb = fastFloori(ys); | |
T xsbd = (T)xsb; | |
T ysbd = (T)ysb; | |
#endif | |
// Skew out to get actual coordinates of rhombohedron origin. | |
T squishOffset = (xsbd + ysbd) * SQUISH_CONSTANT; | |
T xb = xsbd + squishOffset; | |
T yb = ysbd + squishOffset; | |
// Positions relative to origin point. | |
dx0 = x - xb; | |
dy0 = y - yb; | |
// Compute grid coordinates relative to rhomboidal origin. | |
xins = xs - xsbd; | |
yins = ys - ysbd; | |
} | |
// Contribution (1,0). | |
{ | |
T dx1 = dx0 - (T)1.0 - SQUISH_CONSTANT; | |
T dy1 = dy0 - SQUISH_CONSTANT; | |
contr_m[0] = pow2(dx1) + pow2(dy1); | |
contr_ext[0] = extrapolate(xsb + 1, ysb, dx1, dy1); | |
} | |
// Contribution (0,1). | |
{ | |
T dx2 = dx0 - SQUISH_CONSTANT; | |
T dy2 = dy0 - (T)1.0 - SQUISH_CONSTANT; | |
contr_m[1] = pow2(dx2) + pow2(dy2); | |
contr_ext[1] = extrapolate(xsb, ysb + 1, dx2, dy2); | |
} | |
if ((xins + yins) <= (T)1.0) { | |
// Inside the triangle (2-Simplex) at (0,0). | |
T zins = (T)1.0 - (xins + yins); | |
if (zins > xins || zins > yins) { | |
// (0,0) is one of the closest two triangular vertices. | |
if (xins > yins) { | |
xsv_ext = xsb + 1; | |
ysv_ext = ysb - 1; | |
dx_ext = dx0 - (T)1.0; | |
dy_ext = dy0 + (T)1.0; | |
} else { | |
xsv_ext = xsb - 1; | |
ysv_ext = ysb + 1; | |
dx_ext = dx0 + (T)1.0; | |
dy_ext = dy0 - (T)1.0; | |
} | |
} else { | |
// (1,0) and (0,1) are the closest two vertices. | |
xsv_ext = xsb + 1; | |
ysv_ext = ysb + 1; | |
dx_ext = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
} | |
} else { | |
// Inside the triangle (2-Simplex) at (1,1). | |
T zins = (T)2.0 - (xins + yins); | |
if (zins < xins || zins < yins) { | |
// (0,0) is one of the closest two triangular vertices. | |
if (xins > yins) { | |
xsv_ext = xsb + 2; | |
ysv_ext = ysb; | |
dx_ext = dx0 - (T)2.0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
} else { | |
xsv_ext = xsb; | |
ysv_ext = ysb + 2; | |
dx_ext = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext = dy0 - (T)2.0 - (SQUISH_CONSTANT * (T)2.0); | |
} | |
} else { | |
// (1,0) and (0,1) are the closest two vertices. | |
xsv_ext = xsb; | |
ysv_ext = ysb; | |
dx_ext = dx0; | |
dy_ext = dy0; | |
} | |
xsb += 1; | |
ysb += 1; | |
dx0 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dy0 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
} | |
// Contribution (0,0) or (1,1). | |
{ | |
contr_m[2] = pow2(dx0) + pow2(dy0); | |
contr_ext[2] = extrapolate(xsb, ysb, dx0, dy0); | |
} | |
// Extra vertex. | |
{ | |
contr_m[3] = pow2(dx_ext) + pow2(dy_ext); | |
contr_ext[3] = extrapolate(xsv_ext, ysv_ext, dx_ext, dy_ext); | |
} | |
T value = 0.0; | |
for (int i=0; i<4; ++i) { | |
value += pow4(std::max((T)2.0 - contr_m[i], (T)0.0)) * contr_ext[i]; | |
} | |
return (value * NORM_CONSTANT); | |
} | |
template <typename T> | |
void deval (T x, T y, T (&v) [2]) const { | |
#ifdef OSN_USE_STATIC_ASSERT | |
static_assert(std::is_floating_point<T>::value, "OpenSimplexNoise can only be used with floating-point types"); | |
#endif | |
static const T STRETCH_CONSTANT = (T)((1.0 / std::sqrt(2.0 + 1.0) - 1.0) * 0.5); | |
static const T SQUISH_CONSTANT = (T)((std::sqrt(2.0 + 1.0) - 1.0) * 0.5); | |
static const T NORM_CONSTANT = (T)(1.0 / 47.0); | |
inttype xsb, ysb, xsv_ext, ysv_ext; | |
T dx0, dy0, dx_ext, dy_ext; | |
T xins, yins; | |
{ | |
// Place input coordinates on a grid. | |
T stretchOffset = (x + y) * STRETCH_CONSTANT; | |
T xs = x + stretchOffset; | |
T ys = y + stretchOffset; | |
// Floor to get grid coordinates of rhombus super-cell origin. | |
#ifdef __FAST_MATH__ | |
T xsbd = std::floor(xs); | |
T ysbd = std::floor(ys); | |
xsb = (inttype)xsbd; | |
ysb = (inttype)ysbd; | |
#else | |
xsb = fastFloori(xs); | |
ysb = fastFloori(ys); | |
T xsbd = (T)xsb; | |
T ysbd = (T)ysb; | |
#endif | |
// Skew out to get actual coordinates of rhombohedron origin. | |
T squishOffset = (xsbd + ysbd) * SQUISH_CONSTANT; | |
T xb = xsbd + squishOffset; | |
T yb = ysbd + squishOffset; | |
// Positions relative to origin point. | |
dx0 = x - xb; | |
dy0 = y - yb; | |
// Compute grid coordinates relative to rhomboidal origin. | |
xins = xs - xsbd; | |
yins = ys - ysbd; | |
} | |
T dv [2] = {0.0, 0.0}; | |
// Contribution (1,0). | |
{ | |
T dx1 = dx0 - (T)1.0 - SQUISH_CONSTANT; | |
T dy1 = dy0 - SQUISH_CONSTANT; | |
T attn1 = std::max((T)2.0 - ((dx1 * dx1) + (dy1 * dy1)), (T)0.0); | |
T de [2]; | |
T ext = extrapolate(xsb + 1, ysb, dx1, dy1, de); | |
dv[0] += pow2(attn1) * (pow2(attn1) * de[0] - ((T)8.0)*attn1*dx1*ext); | |
dv[1] += pow2(attn1) * (pow2(attn1) * de[1] - ((T)8.0)*attn1*dy1*ext); | |
} | |
// Contribution (0,1). | |
{ | |
T dx2 = dx0 - SQUISH_CONSTANT; | |
T dy2 = dy0 - (T)1.0 - SQUISH_CONSTANT; | |
T attn2 = std::max((T)2.0 - ((dx2 * dx2) + (dy2 * dy2)), (T)0.0); | |
T de [2]; | |
T ext = extrapolate(xsb, ysb + 1, dx2, dy2, de); | |
dv[0] += pow2(attn2) * (pow2(attn2) * de[0] - ((T)8.0)*attn2*dx2*ext); | |
dv[1] += pow2(attn2) * (pow2(attn2) * de[1] - ((T)8.0)*attn2*dy2*ext); | |
} | |
if ((xins + yins) <= (T)1.0) { | |
// Inside the triangle (2-Simplex) at (0,0). | |
T zins = (T)1.0 - (xins + yins); | |
if (zins > xins || zins > yins) { | |
// (0,0) is one of the closest two triangular vertices. | |
if (xins > yins) { | |
xsv_ext = xsb + 1; | |
ysv_ext = ysb - 1; | |
dx_ext = dx0 - (T)1.0; | |
dy_ext = dy0 + (T)1.0; | |
} else { | |
xsv_ext = xsb - 1; | |
ysv_ext = ysb + 1; | |
dx_ext = dx0 + (T)1.0; | |
dy_ext = dy0 - (T)1.0; | |
} | |
} else { | |
// (1,0) and (0,1) are the closest two vertices. | |
xsv_ext = xsb + 1; | |
ysv_ext = ysb + 1; | |
dx_ext = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
} | |
} else { | |
// Inside the triangle (2-Simplex) at (1,1). | |
T zins = (T)2.0 - (xins + yins); | |
if (zins < xins || zins < yins) { | |
// (0,0) is one of the closest two triangular vertices. | |
if (xins > yins) { | |
xsv_ext = xsb + 2; | |
ysv_ext = ysb; | |
dx_ext = dx0 - (T)2.0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
} else { | |
xsv_ext = xsb; | |
ysv_ext = ysb + 2; | |
dx_ext = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext = dy0 - (T)2.0 - (SQUISH_CONSTANT * (T)2.0); | |
} | |
} else { | |
// (1,0) and (0,1) are the closest two vertices. | |
xsv_ext = xsb; | |
ysv_ext = ysb; | |
dx_ext = dx0; | |
dy_ext = dy0; | |
} | |
xsb += 1; | |
ysb += 1; | |
dx0 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dy0 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
} | |
// Contribution (0,0) or (1,1). | |
{ | |
T attn = std::max((T)2.0 - ((dx0 * dx0) + (dy0 * dy0)), (T)0.0); | |
T de [2]; | |
T ext = extrapolate(xsb, ysb, dx0, dy0, de); | |
dv[0] += pow2(attn) * (pow2(attn) * de[0] - ((T)8.0)*attn*dx0*ext); | |
dv[1] += pow2(attn) * (pow2(attn) * de[1] - ((T)8.0)*attn*dy0*ext); | |
} | |
// Extra vertex. | |
{ | |
T attn = std::max((T)2.0 - ((dx_ext * dx_ext) + (dy_ext * dy_ext)), (T)0.0); | |
T de [2]; | |
T ext = extrapolate(xsv_ext, ysv_ext, dx_ext, dy_ext, de); | |
dv[0] += pow2(attn) * (pow2(attn) * de[0] - ((T)8.0)*attn*dx_ext*ext); | |
dv[1] += pow2(attn) * (pow2(attn) * de[1] - ((T)8.0)*attn*dy_ext*ext); | |
} | |
v[0] = dv[0] * NORM_CONSTANT; | |
v[1] = dv[1] * NORM_CONSTANT; | |
} | |
}; | |
// Array of gradient values for 2D. They approximate the directions to the | |
// vertices of a octagon from its center. | |
// Gradient set 2014-10-06. | |
const int Noise<2>::gradients [] = { | |
5, 2, 2, 5, -5, 2, -2, 5, | |
5,-2, 2,-5, -5,-2, -2,-5 | |
}; | |
// 3D Implementation of the OpenSimplexNoise generator. | |
template <> | |
class Noise <3> : public NoiseBase { | |
private: | |
// Array of gradient values for 3D. Values are defined below the class definition. | |
static const int gradients [72]; | |
// Because 72 is not a power of two, extrapolate cannot use a bitmask to index | |
// into the perm array. Pre-calculate and store the indices instead. | |
int permGradIndex [256]; | |
template <typename T> | |
inline T extrapolate (inttype xsb, inttype ysb, inttype zsb, T dx, T dy, T dz) const { | |
unsigned int index = permGradIndex[(perm[(perm[xsb & 0xFF] + ysb) & 0xFF] + zsb) & 0xFF]; | |
return gradients[index] * dx + | |
gradients[index + 1] * dy + | |
gradients[index + 2] * dz; | |
} | |
template <typename T> | |
inline T extrapolate (inttype xsb, inttype ysb, inttype zsb, T dx, T dy, T dz, T (&de) [3]) const { | |
unsigned int index = permGradIndex[(perm[(perm[xsb & 0xFF] + ysb) & 0xFF] + zsb) & 0xFF]; | |
return (de[0] = gradients[index]) * dx + | |
(de[1] = gradients[index + 1]) * dy + | |
(de[2] = gradients[index + 2]) * dz; | |
} | |
public: | |
#ifdef OSN_USE_CSTDINT | |
// Initializes the class using a permutation array generated from a 64-bit seed. | |
// Generates a proper permutation (i.e. doesn't merely perform N successive | |
// pair swaps on a base array). | |
// Uses a simple 64-bit LCG. | |
Noise (int64_t seed = 0LL) : NoiseBase () { | |
int source [256]; | |
for (int i = 0; i < 256; ++i) { source[i] = i; } | |
LCG_STEP(seed); | |
LCG_STEP(seed); | |
LCG_STEP(seed); | |
for (int i = 255; i >= 0; --i) { | |
LCG_STEP(seed); | |
int r = (int)((seed + 31) % (i + 1)); | |
if (r < 0) { r += (i + 1); } | |
perm[i] = source[r]; | |
permGradIndex[i] = (int)((perm[i] % (72 / 3)) * 3); | |
source[r] = source[i]; | |
} | |
} | |
#else | |
// Initializes the class using a permutation array generated from a 32-bit seed. | |
// Generates a proper permutation (i.e. doesn't merely perform N successive | |
// pair swaps on a base array). | |
Noise (long seed = 0L) : NoiseBase () { | |
int source [256]; | |
for (int i = 0; i < 256; ++i) { source[i] = i; } | |
srand(seed); | |
for (int i = 255; i >= 0; --i) { | |
int r = (int)(rand() % (i + 1)); | |
perm[i] = source[r]; | |
// NB: 72 is the number of elements of the gradients3D array | |
permGradIndex[i] = (int)((perm[i] % (72 / 3)) * 3); | |
source[r] = source[i]; | |
} | |
} | |
#endif | |
Noise (const int * p) : NoiseBase () { | |
// Copy the supplied permutation array into this instance. | |
for (int i = 0; i < 256; ++i) { | |
perm[i] = p[i]; | |
permGradIndex[i] = (int)((perm[i] % (72 / 3)) * 3); | |
} | |
} | |
template <typename T> | |
T eval (T x, T y, T z) const { | |
#ifdef OSN_USE_STATIC_ASSERT | |
static_assert(std::is_floating_point<T>::value, "OpenSimplexNoise can only be used with floating-point types"); | |
#endif | |
static const T STRETCH_CONSTANT = (T)(-1.0 / 6.0); // (1 / sqrt(3 + 1) - 1) / 3 | |
static const T SQUISH_CONSTANT = (T)(1.0 / 3.0); // (sqrt(3 + 1) - 1) / 3 | |
static const T NORM_CONSTANT = (T)(1.0 / 103.0); | |
inttype xsb, ysb, zsb; | |
T dx0, dy0, dz0; | |
T xins, yins, zins; | |
// Parameters for the individual contributions | |
T contr_m [9], contr_ext [9]; | |
{ | |
// Place input coordinates on simplectic lattice. | |
T stretchOffset = (x + y + z) * STRETCH_CONSTANT; | |
T xs = x + stretchOffset; | |
T ys = y + stretchOffset; | |
T zs = z + stretchOffset; | |
// Floor to get simplectic lattice coordinates of rhombohedron | |
// (stretched cube) super-cell. | |
#ifdef __FAST_MATH__ | |
T xsbd = std::floor(xs); | |
T ysbd = std::floor(ys); | |
T zsbd = std::floor(zs); | |
xsb = (inttype)xsbd; | |
ysb = (inttype)ysbd; | |
zsb = (inttype)zsbd; | |
#else | |
xsb = fastFloori(xs); | |
ysb = fastFloori(ys); | |
zsb = fastFloori(zs); | |
T xsbd = (T)xsb; | |
T ysbd = (T)ysb; | |
T zsbd = (T)zsb; | |
#endif | |
// Skew out to get actual coordinates of rhombohedron origin. | |
T squishOffset = (xsbd + ysbd + zsbd) * SQUISH_CONSTANT; | |
T xb = xsbd + squishOffset; | |
T yb = ysbd + squishOffset; | |
T zb = zsbd + squishOffset; | |
// Positions relative to origin point. | |
dx0 = x - xb; | |
dy0 = y - yb; | |
dz0 = z - zb; | |
// Compute simplectic lattice coordinates relative to rhombohedral origin. | |
xins = xs - xsbd; | |
yins = ys - ysbd; | |
zins = zs - zsbd; | |
} | |
// These are given values inside the next block, and used afterwards. | |
inttype xsv_ext0, ysv_ext0, zsv_ext0; | |
inttype xsv_ext1, ysv_ext1, zsv_ext1; | |
T dx_ext0, dy_ext0, dz_ext0; | |
T dx_ext1, dy_ext1, dz_ext1; | |
// Sum together to get a value that determines which cell we are in. | |
T inSum = xins + yins + zins; | |
if (inSum > (T)1.0 && inSum < (T)2.0) { | |
// The point is inside the octahedron (rectified 3-Simplex) inbetween. | |
T aScore; | |
OSN_BYTE aPoint; | |
bool aIsFurtherSide; | |
T bScore; | |
OSN_BYTE bPoint; | |
bool bIsFurtherSide; | |
// Decide between point (1,0,0) and (0,1,1) as closest. | |
T p1 = xins + yins; | |
if (p1 <= (T)1.0) { | |
aScore = (T)1.0 - p1; | |
aPoint = 4; | |
aIsFurtherSide = false; | |
} else { | |
aScore = p1 - (T)1.0; | |
aPoint = 3; | |
aIsFurtherSide = true; | |
} | |
// Decide between point (0,1,0) and (1,0,1) as closest. | |
T p2 = xins + zins; | |
if (p2 <= (T)1.0) { | |
bScore = (T)1.0 - p2; | |
bPoint = 2; | |
bIsFurtherSide = false; | |
} else { | |
bScore = p2 - (T)1.0; | |
bPoint = 5; | |
bIsFurtherSide = true; | |
} | |
// The closest out of the two (0,0,1) and (1,1,0) will replace the | |
// furthest out of the two decided above if closer. | |
T p3 = yins + zins; | |
if (p3 > (T)1.0) { | |
T score = p3 - (T)1.0; | |
if (aScore > bScore && bScore < score) { | |
bScore = score; | |
bPoint = 6; | |
bIsFurtherSide = true; | |
} else if (aScore <= bScore && aScore < score) { | |
aScore = score; | |
aPoint = 6; | |
aIsFurtherSide = true; | |
} | |
} else { | |
T score = (T)1.0 - p3; | |
if (aScore > bScore && bScore < score) { | |
bScore = score; | |
bPoint = 1; | |
bIsFurtherSide = false; | |
} else if (aScore <= bScore && aScore < score) { | |
aScore = score; | |
aPoint = 1; | |
aIsFurtherSide = false; | |
} | |
} | |
// Where each of the two closest points are determines how the | |
// extra two vertices are calculated. | |
if (aIsFurtherSide == bIsFurtherSide) { | |
if (aIsFurtherSide) { | |
// Both closest points on (1,1,1) side. | |
// One of the two extra points is (1,1,1) | |
xsv_ext0 = xsb + 1; | |
ysv_ext0 = ysb + 1; | |
zsv_ext0 = zsb + 1; | |
dx_ext0 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
dy_ext0 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
dz_ext0 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
// Other extra point is based on the shared axis. | |
OSN_BYTE c = aPoint & bPoint; | |
if (c & 0x01) { | |
xsv_ext1 = xsb + 2; | |
ysv_ext1 = ysb; | |
zsv_ext1 = zsb; | |
dx_ext1 = dx0 - (T)2.0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext1 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
dz_ext1 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
} else if (c & 0x02) { | |
xsv_ext1 = xsb; | |
ysv_ext1 = ysb + 2; | |
zsv_ext1 = zsb; | |
dx_ext1 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext1 = dy0 - (T)2.0 - (SQUISH_CONSTANT * (T)2.0); | |
dz_ext1 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
} else { | |
xsv_ext1 = xsb; | |
ysv_ext1 = ysb; | |
zsv_ext1 = zsb + 2; | |
dx_ext1 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext1 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
dz_ext1 = dz0 - (T)2.0 - (SQUISH_CONSTANT * (T)2.0); | |
} | |
} else { | |
// Both closest points are on the (0,0,0) side. | |
// One of the two extra points is (0,0,0). | |
xsv_ext0 = xsb; | |
ysv_ext0 = ysb; | |
zsv_ext0 = zsb; | |
dx_ext0 = dx0; | |
dy_ext0 = dy0; | |
dz_ext0 = dz0; | |
// The other extra point is based on the omitted axis. | |
OSN_BYTE c = aPoint | bPoint; | |
if (!(c & 0x01)) { | |
xsv_ext1 = xsb - 1; | |
ysv_ext1 = ysb + 1; | |
zsv_ext1 = zsb + 1; | |
dx_ext1 = dx0 + (T)1.0 - SQUISH_CONSTANT; | |
dy_ext1 = dy0 - (T)1.0 - SQUISH_CONSTANT; | |
dz_ext1 = dz0 - (T)1.0 - SQUISH_CONSTANT; | |
} else if (!(c & 0x02)) { | |
xsv_ext1 = xsb + 1; | |
ysv_ext1 = ysb - 1; | |
zsv_ext1 = zsb + 1; | |
dx_ext1 = dx0 - (T)1.0 - SQUISH_CONSTANT; | |
dy_ext1 = dy0 + (T)1.0 - SQUISH_CONSTANT; | |
dz_ext1 = dz0 - (T)1.0 - SQUISH_CONSTANT; | |
} else { | |
xsv_ext1 = xsb + 1; | |
ysv_ext1 = ysb + 1; | |
zsv_ext1 = zsb - 1; | |
dx_ext1 = dx0 - (T)1.0 - SQUISH_CONSTANT; | |
dy_ext1 = dy0 - (T)1.0 - SQUISH_CONSTANT; | |
dz_ext1 = dz0 + (T)1.0 - SQUISH_CONSTANT; | |
} | |
} | |
} else { | |
// One point is on the (0,0,0) side, one point is on the (1,1,1) side. | |
OSN_BYTE c1, c2; | |
if (aIsFurtherSide) { | |
c1 = aPoint; | |
c2 = bPoint; | |
} else { | |
c1 = bPoint; | |
c2 = aPoint; | |
} | |
// One contribution is a permutation of (1,1,-1). | |
if (!(c1 & 0x01)) { | |
xsv_ext0 = xsb - 1; | |
ysv_ext0 = ysb + 1; | |
zsv_ext0 = zsb + 1; | |
dx_ext0 = dx0 + (T)1.0 - SQUISH_CONSTANT; | |
dy_ext0 = dy0 - (T)1.0 - SQUISH_CONSTANT; | |
dz_ext0 = dz0 - (T)1.0 - SQUISH_CONSTANT; | |
} else if (!(c1 & 0x02)) { | |
xsv_ext0 = xsb + 1; | |
ysv_ext0 = ysb - 1; | |
zsv_ext0 = zsb + 1; | |
dx_ext0 = dx0 - (T)1.0 - SQUISH_CONSTANT; | |
dy_ext0 = dy0 + (T)1.0 - SQUISH_CONSTANT; | |
dz_ext0 = dz0 - (T)1.0 - SQUISH_CONSTANT; | |
} else { | |
xsv_ext0 = xsb + 1; | |
ysv_ext0 = ysb + 1; | |
zsv_ext0 = zsb - 1; | |
dx_ext0 = dx0 - (T)1.0 - SQUISH_CONSTANT; | |
dy_ext0 = dy0 - (T)1.0 - SQUISH_CONSTANT; | |
dz_ext0 = dz0 + (T)1.0 - SQUISH_CONSTANT; | |
} | |
// One contribution is a permutation of (0,0,2). | |
if (c2 & 0x01) { | |
xsv_ext1 = xsb + 2; | |
ysv_ext1 = ysb; | |
zsv_ext1 = zsb; | |
dx_ext1 = dx0 - (T)2.0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext1 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
dz_ext1 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
} else if (c2 & 0x02) { | |
xsv_ext1 = xsb; | |
ysv_ext1 = ysb + 2; | |
zsv_ext1 = zsb; | |
dx_ext1 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext1 = dy0 - (T)2.0 - (SQUISH_CONSTANT * (T)2.0); | |
dz_ext1 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
} else { | |
xsv_ext1 = xsb; | |
ysv_ext1 = ysb; | |
zsv_ext1 = zsb + 2; | |
dx_ext1 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext1 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
dz_ext1 = dz0 - (T)2.0 - (SQUISH_CONSTANT * (T)2.0); | |
} | |
} | |
contr_m[0] = contr_ext[0] = 0.0; | |
// Contribution (0,0,1). | |
T dx1 = dx0 - (T)1.0 - SQUISH_CONSTANT; | |
T dy1 = dy0 - SQUISH_CONSTANT; | |
T dz1 = dz0 - SQUISH_CONSTANT; | |
contr_m[1] = pow2(dx1) + pow2(dy1) + pow2(dz1); | |
contr_ext[1] = extrapolate(xsb + 1, ysb, zsb, dx1, dy1, dz1); | |
// Contribution (0,1,0). | |
T dx2 = dx0 - SQUISH_CONSTANT; | |
T dy2 = dy0 - (T)1.0 - SQUISH_CONSTANT; | |
T dz2 = dz1; | |
contr_m[2] = pow2(dx2) + pow2(dy2) + pow2(dz2); | |
contr_ext[2] = extrapolate(xsb, ysb + 1, zsb, dx2, dy2, dz2); | |
// Contribution (1,0,0). | |
T dx3 = dx2; | |
T dy3 = dy1; | |
T dz3 = dz0 - (T)1.0 - SQUISH_CONSTANT; | |
contr_m[3] = pow2(dx3) + pow2(dy3) + pow2(dz3); | |
contr_ext[3] = extrapolate(xsb, ysb, zsb + 1, dx3, dy3, dz3); | |
// Contribution (1,1,0). | |
T dx4 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dy4 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dz4 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
contr_m[4] = pow2(dx4) + pow2(dy4) + pow2(dz4); | |
contr_ext[4] = extrapolate(xsb + 1, ysb + 1, zsb, dx4, dy4, dz4); | |
// Contribution (1,0,1). | |
T dx5 = dx4; | |
T dy5 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
T dz5 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
contr_m[5] = pow2(dx5) + pow2(dy5) + pow2(dz5); | |
contr_ext[5] = extrapolate(xsb + 1, ysb, zsb + 1, dx5, dy5, dz5); | |
// Contribution (0,1,1). | |
T dx6 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
T dy6 = dy4; | |
T dz6 = dz5; | |
contr_m[6] = pow2(dx6) + pow2(dy6) + pow2(dz6); | |
contr_ext[6] = extrapolate(xsb, ysb + 1, zsb + 1, dx6, dy6, dz6); | |
} else if (inSum <= (T)1.0) { | |
// The point is inside the tetrahedron (3-Simplex) at (0,0,0) | |
// Determine which of (0,0,1), (0,1,0), (1,0,0) are closest. | |
OSN_BYTE aPoint = 1; | |
T aScore = xins; | |
OSN_BYTE bPoint = 2; | |
T bScore = yins; | |
if (aScore < bScore && zins > aScore) { | |
aScore = zins; | |
aPoint = 4; | |
} else if (aScore >= bScore && zins > bScore) { | |
bScore = zins; | |
bPoint = 4; | |
} | |
// Determine the two lattice points not part of the tetrahedron that may contribute. | |
// This depends on the closest two tetrahedral vertices, including (0,0,0). | |
T wins = (T)1.0 - inSum; | |
if (wins > aScore || wins > bScore) { | |
// (0,0,0) is one of the closest two tetrahedral vertices. | |
// The other closest vertex is the closer of a and b. | |
OSN_BYTE c = ((bScore > aScore) ? bPoint : aPoint); | |
if (c != 1) { | |
xsv_ext0 = xsb - 1; | |
xsv_ext1 = xsb; | |
dx_ext0 = dx0 + (T)1.0; | |
dx_ext1 = dx0; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsb + 1; | |
dx_ext0 = dx_ext1 = dx0 - (T)1.0; | |
} | |
if (c != 2) { | |
ysv_ext0 = ysv_ext1 = ysb; | |
dy_ext0 = dy_ext1 = dy0; | |
if (c == 1) { | |
ysv_ext0 -= 1; | |
dy_ext0 += (T)1.0; | |
} else { | |
ysv_ext1 -= 1; | |
dy_ext1 += (T)1.0; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysb + 1; | |
dy_ext0 = dy_ext1 = dy0 - (T)1.0; | |
} | |
if (c != 4) { | |
zsv_ext0 = zsb; | |
zsv_ext1 = zsb - 1; | |
dz_ext0 = dz0; | |
dz_ext1 = dz0 + (T)1.0; | |
} else { | |
zsv_ext0 = zsv_ext1 = zsb + 1; | |
dz_ext0 = dz_ext1 = dz0 - (T)1.0; | |
} | |
} else { | |
// (0,0,0) is not one of the closest two tetrahedral vertices. | |
// The two extra vertices are determined by the closest two. | |
OSN_BYTE c = (aPoint | bPoint); | |
if (c & 0x01) { | |
xsv_ext0 = xsv_ext1 = xsb + 1; | |
dx_ext0 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dx_ext1 = dx0 - (T)1.0 - SQUISH_CONSTANT; | |
} else { | |
xsv_ext0 = xsb; | |
xsv_ext1 = xsb - 1; | |
dx_ext0 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
dx_ext1 = dx0 + (T)1.0 - SQUISH_CONSTANT; | |
} | |
if (c & 0x02) { | |
ysv_ext0 = ysv_ext1 = ysb + 1; | |
dy_ext0 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext1 = dy0 - (T)1.0 - SQUISH_CONSTANT; | |
} else { | |
ysv_ext0 = ysb; | |
ysv_ext1 = ysb - 1; | |
dy_ext0 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext1 = dy0 + (T)1.0 - SQUISH_CONSTANT; | |
} | |
if (c & 0x04) { | |
zsv_ext0 = zsv_ext1 = zsb + 1; | |
dz_ext0 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dz_ext1 = dz0 - (T)1.0 - SQUISH_CONSTANT; | |
} else { | |
zsv_ext0 = zsb; | |
zsv_ext1 = zsb - 1; | |
dz_ext0 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
dz_ext1 = dz0 + (T)1.0 - SQUISH_CONSTANT; | |
} | |
} | |
// Contribution (0,0,0) | |
{ | |
contr_m[0] = pow2(dx0) + pow2(dy0) + pow2(dz0); | |
contr_ext[0] = extrapolate(xsb, ysb, zsb, dx0, dy0, dz0); | |
} | |
// Contribution (0,0,1) | |
T dx1 = dx0 - (T)1.0 - SQUISH_CONSTANT; | |
T dy1 = dy0 - SQUISH_CONSTANT; | |
T dz1 = dz0 - SQUISH_CONSTANT; | |
contr_m[1] = pow2(dx1) + pow2(dy1) + pow2(dz1); | |
contr_ext[1] = extrapolate(xsb + 1, ysb, zsb, dx1, dy1, dz1); | |
// Contribution (0,1,0) | |
T dx2 = dx0 - SQUISH_CONSTANT; | |
T dy2 = dy0 - (T)1.0 - SQUISH_CONSTANT; | |
T dz2 = dz1; | |
contr_m[2] = pow2(dx2) + pow2(dy2) + pow2(dz2); | |
contr_ext[2] = extrapolate(xsb, ysb + 1, zsb, dx2, dy2, dz2); | |
// Contribution (1,0,0) | |
T dx3 = dx2; | |
T dy3 = dy1; | |
T dz3 = dz0 - (T)1.0 - SQUISH_CONSTANT; | |
contr_m[3] = pow2(dx3) + pow2(dy3) + pow2(dz3); | |
contr_ext[3] = extrapolate(xsb, ysb, zsb + 1, dx3, dy3, dz3); | |
contr_m[4] = contr_m[5] = contr_m[6] = 0.0; | |
contr_ext[4] = contr_ext[5] = contr_ext[6] = 0.0; | |
} else { | |
// The point is inside the tetrahedron (3-Simplex) at (1,1,1) | |
// Determine which two tetrahedral vertices are the closest | |
// out of (1,1,0), (1,0,1), and (0,1,1), but not (1,1,1). | |
OSN_BYTE aPoint = 6; | |
T aScore = xins; | |
OSN_BYTE bPoint = 5; | |
T bScore = yins; | |
if (aScore <= bScore && zins < bScore) { | |
bScore = zins; | |
bPoint = 3; | |
} else if (aScore > bScore && zins < aScore) { | |
aScore = zins; | |
aPoint = 3; | |
} | |
// Determine the two lattice points not part of the tetrahedron that may contribute. | |
// This depends on the closest two tetrahedral vertices, including (1,1,1). | |
T wins = 3.0 - inSum; | |
if (wins < aScore || wins < bScore) { | |
// (1,1,1) is one of the closest two tetrahedral vertices. | |
// The other closest vertex is the closest of a and b. | |
OSN_BYTE c = ((bScore < aScore) ? bPoint : aPoint); | |
if (c & 0x01) { | |
xsv_ext0 = xsb + 2; | |
xsv_ext1 = xsb + 1; | |
dx_ext0 = dx0 - (T)2.0 - (SQUISH_CONSTANT * (T)3.0); | |
dx_ext1 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
} else { | |
xsv_ext0 = xsv_ext1 = xsb; | |
dx_ext0 = dx_ext1 = dx0 - (SQUISH_CONSTANT * (T)3.0); | |
} | |
if (c & 0x02) { | |
ysv_ext0 = ysv_ext1 = ysb + 1; | |
dy_ext0 = dy_ext1 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
if (c & 0x01) { | |
ysv_ext1 += 1; | |
dy_ext1 -= (T)1.0; | |
} else { | |
ysv_ext0 += 1; | |
dy_ext0 -= (T)1.0; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysb; | |
dy_ext0 = dy_ext1 = dy0 - (SQUISH_CONSTANT * (T)3.0); | |
} | |
if (c & 0x04) { | |
zsv_ext0 = zsb + 1; | |
zsv_ext1 = zsb + 2; | |
dz_ext0 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
dz_ext1 = dz0 - (T)2.0 - (SQUISH_CONSTANT * (T)3.0); | |
} else { | |
zsv_ext0 = zsv_ext1 = zsb; | |
dz_ext0 = dz_ext1 = dz0 - (SQUISH_CONSTANT * (T)3.0); | |
} | |
} else { | |
// (1,1,1) is not one of the closest two tetrahedral vertices. | |
// The two extra vertices are determined by the closest two. | |
OSN_BYTE c = aPoint & bPoint; | |
if (c & 0x01) { | |
xsv_ext0 = xsb + 1; | |
xsv_ext1 = xsb + 2; | |
dx_ext0 = dx0 - (T)1.0 - SQUISH_CONSTANT; | |
dx_ext1 = dx0 - (T)2.0 - (SQUISH_CONSTANT * (T)2.0); | |
} else { | |
xsv_ext0 = xsv_ext1 = xsb; | |
dx_ext0 = dx0 - SQUISH_CONSTANT; | |
dx_ext1 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
} | |
if (c & 0x02) { | |
ysv_ext0 = ysb + 1; | |
ysv_ext1 = ysb + 2; | |
dy_ext0 = dy0 - (T)1.0 - SQUISH_CONSTANT; | |
dy_ext1 = dy0 - (T)2.0 - (SQUISH_CONSTANT * (T)2.0); | |
} else { | |
ysv_ext0 = ysv_ext1 = ysb; | |
dy_ext0 = dy0 - SQUISH_CONSTANT; | |
dy_ext1 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
} | |
if (c & 0x04) { | |
zsv_ext0 = zsb + 1; | |
zsv_ext1 = zsb + 2; | |
dz_ext0 = dz0 - (T)1.0 - SQUISH_CONSTANT; | |
dz_ext1 = dz0 - (T)2.0 - (SQUISH_CONSTANT * (T)2.0); | |
} else { | |
zsv_ext0 = zsv_ext1 = zsb; | |
dz_ext0 = dz0 - SQUISH_CONSTANT; | |
dz_ext1 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
} | |
} | |
// Contribution (1,1,0) | |
T dx3 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dy3 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dz3 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
contr_m[3] = pow2(dx3) + pow2(dy3) + pow2(dz3); | |
contr_ext[3] = extrapolate(xsb + 1, ysb + 1, zsb, dx3, dy3, dz3); | |
// Contribution (1,0,1) | |
T dx2 = dx3; | |
T dy2 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
T dz2 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
contr_m[2] = pow2(dx2) + pow2(dy2) + pow2(dz2); | |
contr_ext[2] = extrapolate(xsb + 1, ysb, zsb + 1, dx2, dy2, dz2); | |
// Contribution (0,1,1) | |
{ | |
T dx1 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
T dy1 = dy3; | |
T dz1 = dz2; | |
contr_m[1] = pow2(dx1) + pow2(dy1) + pow2(dz1); | |
contr_ext[1] = extrapolate(xsb, ysb + 1, zsb + 1, dx1, dy1, dz1); | |
} | |
// Contribution (1,1,1) | |
{ | |
dx0 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
dy0 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
dz0 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
contr_m[0] = pow2(dx0) + pow2(dy0) + pow2(dz0); | |
contr_ext[0] = extrapolate(xsb + 1, ysb + 1, zsb + 1, dx0, dy0, dz0); | |
} | |
contr_m[4] = contr_m[5] = contr_m[6] = 0.0; | |
contr_ext[4] = contr_ext[5] = contr_ext[6] = 0.0; | |
} | |
// First extra vertex. | |
contr_m[7] = pow2(dx_ext0) + pow2(dy_ext0) + pow2(dz_ext0); | |
contr_ext[7] = extrapolate(xsv_ext0, ysv_ext0, zsv_ext0, dx_ext0, dy_ext0, dz_ext0); | |
// Second extra vertex. | |
contr_m[8] = pow2(dx_ext1) + pow2(dy_ext1) + pow2(dz_ext1); | |
contr_ext[8] = extrapolate(xsv_ext1, ysv_ext1, zsv_ext1, dx_ext1, dy_ext1, dz_ext1); | |
T value = 0.0; | |
for (int i=0; i<9; ++i) { | |
value += pow4(std::max((T)2.0 - contr_m[i], (T)0.0)) * contr_ext[i]; | |
} | |
return (value * NORM_CONSTANT); | |
} | |
}; | |
// Array of gradient values for 3D. They approximate the directions to the | |
// vertices of a rhombicuboctahedron from its center, skewed so that the | |
// triangular and square facets can be inscribed in circles of the same radius. | |
// New gradient set 2014-10-06. | |
const int Noise<3>::gradients [] = { | |
-11, 4, 4, -4, 11, 4, -4, 4, 11, 11, 4, 4, 4, 11, 4, 4, 4, 11, | |
-11,-4, 4, -4,-11, 4, -4,-4, 11, 11,-4, 4, 4,-11, 4, 4,-4, 11, | |
-11, 4,-4, -4, 11,-4, -4, 4,-11, 11, 4,-4, 4, 11,-4, 4, 4,-11, | |
-11,-4,-4, -4,-11,-4, -4,-4,-11, 11,-4,-4, 4,-11,-4, 4,-4,-11 | |
}; | |
// 4D Implementation of the OpenSimplexNoise generator. | |
template <> | |
class Noise <4> : public NoiseBase { | |
private: | |
// Array of gradient values for 4D. Values are defined below the class definition. | |
static const int gradients [256]; | |
template <typename T> | |
inline T extrapolate (inttype xsb, inttype ysb, inttype zsb, inttype wsb, T dx, T dy, T dz, T dw) const { | |
unsigned int index = perm[(perm[(perm[(perm[xsb & 0xFF] + ysb) & 0xFF] + zsb) & 0xFF] + wsb) & 0xFF] & 0xFC; | |
return gradients[index] * dx + | |
gradients[index + 1] * dy + | |
gradients[index + 2] * dz + | |
gradients[index + 3] * dw; | |
} | |
public: | |
#ifdef OSN_USE_CSTDINT | |
Noise (int64_t seed = 0LL) : NoiseBase (seed) {} | |
#else | |
Noise (long seed = 0L) : NoiseBase (seed) {} | |
#endif | |
Noise (const int * p) : NoiseBase (p) {} | |
template <typename T> | |
T eval (T x, T y, T z, T w) const { | |
#ifdef OSN_USE_STATIC_ASSERT | |
static_assert(std::is_floating_point<T>::value, "OpenSimplexNoise can only be used with floating-point types"); | |
#endif | |
static const T STRETCH_CONSTANT = (T)((1.0 / std::sqrt(4.0 + 1.0) - 1.0) * 0.25); | |
static const T SQUISH_CONSTANT = (T)((std::sqrt(4.0 + 1.0) - 1.0) * 0.25); | |
static const T NORM_CONSTANT = (T)(1.0 / 30.0); | |
T dx0, dy0, dz0, dw0; | |
inttype xsb, ysb, zsb, wsb; | |
T xins, yins, zins, wins; | |
{ | |
// Place input coordinates on simplectic honeycomb. | |
T stretchOffset = (x + y + z + w) * STRETCH_CONSTANT; | |
T xs = x + stretchOffset; | |
T ys = y + stretchOffset; | |
T zs = z + stretchOffset; | |
T ws = w + stretchOffset; | |
// Floor to get simplectic honeycomb coordinates of rhombo-hypercube origin. | |
#ifdef __FAST_MATH__ | |
T xsbd = std::floor(xs); | |
T ysbd = std::floor(ys); | |
T zsbd = std::floor(zs); | |
T wsbd = std::floor(ws); | |
xsb = (inttype)xsbd; | |
ysb = (inttype)ysbd; | |
zsb = (inttype)zsbd; | |
wsb = (inttype)wsbd; | |
#else | |
xsb = fastFloori(xs); | |
ysb = fastFloori(ys); | |
zsb = fastFloori(zs); | |
wsb = fastFloori(ws); | |
T xsbd = (T)xsb; | |
T ysbd = (T)ysb; | |
T zsbd = (T)zsb; | |
T wsbd = (T)wsb; | |
#endif | |
// Skew out to get actual coordinates of stretched rhombo-hypercube origin. | |
T squishOffset = (xsbd + ysbd + zsbd + wsbd) * SQUISH_CONSTANT; | |
T xb = xsbd + squishOffset; | |
T yb = ysbd + squishOffset; | |
T zb = zsbd + squishOffset; | |
T wb = wsbd + squishOffset; | |
// Positions relative to origin point. | |
dx0 = x - xb; | |
dy0 = y - yb; | |
dz0 = z - zb; | |
dw0 = w - wb; | |
// Compute simplectic honeycomb coordinates relative to rhombo-hypercube origin. | |
xins = xs - xsbd; | |
yins = ys - ysbd; | |
zins = zs - zsbd; | |
wins = ws - wsbd; | |
} | |
// These are given values inside the next block, and used afterwards. | |
inttype xsv_ext0, ysv_ext0, zsv_ext0, wsv_ext0; | |
inttype xsv_ext1, ysv_ext1, zsv_ext1, wsv_ext1; | |
inttype xsv_ext2, ysv_ext2, zsv_ext2, wsv_ext2; | |
T dx_ext0, dy_ext0, dz_ext0, dw_ext0; | |
T dx_ext1, dy_ext1, dz_ext1, dw_ext1; | |
T dx_ext2, dy_ext2, dz_ext2, dw_ext2; | |
T value = 0.0; | |
// Sum together to get a value that determines which cell we are in. | |
T inSum = xins + yins + zins + wins; | |
if (inSum <= (T)1.0) { | |
// Inside a pentachoron (4-Simplex) at (0,0,0,0) | |
// Determine which two of (0,0,0,1), (0,0,1,0), (0,1,0,0) and (1,0,0,0) are closest. | |
OSN_BYTE aPoint = 0x01, bPoint = 0x02; | |
T aScore = xins, bScore = yins; | |
if (aScore >= bScore && zins > bScore) { | |
bPoint = 0x04; | |
bScore = zins; | |
} else if (aScore < bScore && zins > aScore) { | |
aPoint = 0x04; | |
aScore = zins; | |
} | |
if (aScore >= bScore && wins > bScore) { | |
bPoint = 0x08; | |
bScore = wins; | |
} else if (aScore < bScore && wins > aScore) { | |
aPoint = 0x08; | |
aScore = wins; | |
} | |
// Determine the three lattice points not part of the pentachoron | |
// that may contribute. | |
// This depends on the closest two pentachoron vertices, including (0,0,0,0). | |
T uins = (T)1.0 - inSum; | |
if (uins > aScore || uins > bScore) { | |
// (0,0,0,0) is one of the closest two pentachoron vertices. | |
// The other closest vertex is the closest out of A and B. | |
OSN_BYTE c = (bScore > aScore ? bPoint : aPoint); | |
if (c != 0x01) { | |
xsv_ext0 = xsb - 1; | |
xsv_ext1 = xsv_ext2 = xsb; | |
dx_ext0 = dx0 + (T)1.0; | |
dx_ext1 = dx_ext2 = dx0; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb + 1; | |
dx_ext0 = dx_ext1 = dx_ext2 = dx0 - (T)1.0; | |
} | |
if (c != 0x02) { | |
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb; | |
dy_ext0 = dy_ext1 = dy_ext2 = dy0; | |
if (c != 0x01) { | |
ysv_ext1 -= 1; | |
dy_ext1 += (T)1.0; | |
} else { | |
ysv_ext0 -= 1; | |
dy_ext0 += (T)1.0; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1; | |
dy_ext0 = dy_ext1 = dy_ext2 = dy0 - (T)1.0; | |
} | |
if (c != 0x04) { | |
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb; | |
dz_ext0 = dz_ext1 = dz_ext2 = dz0; | |
if (c & 0x03) { | |
zsv_ext1 -= 1; | |
dz_ext1 += (T)1.0; | |
} else { | |
zsv_ext2 -= 1; | |
dz_ext2 += (T)1.0; | |
} | |
} else { | |
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1; | |
dz_ext0 = dz_ext1 = dz_ext2 = dz0 - (T)1.0; | |
} | |
if (c != 0x08) { | |
wsv_ext0 = wsv_ext1 = wsb; | |
wsv_ext2 = wsb - 1; | |
dw_ext0 = dw_ext1 = dw0; | |
dw_ext2 = dw0 + (T)1.0; | |
} else { | |
wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb + 1; | |
dw_ext0 = dw_ext1 = dw_ext2 = dw0 - (T)1.0; | |
} | |
} else { | |
// (0,0,0,0) is not one of the closest two pentachoron vertices. | |
// The three extra vertices are determined by the closest two. | |
OSN_BYTE c = (aPoint | bPoint); | |
if (!(c & 0x01)) { | |
xsv_ext0 = xsv_ext2 = xsb; | |
xsv_ext1 = xsb - 1; | |
dx_ext0 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
dx_ext1 = dx0 + (T)1.0 - SQUISH_CONSTANT; | |
dx_ext2 = dx0 - SQUISH_CONSTANT; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb + 1; | |
dx_ext0 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dx_ext1 = dx_ext2 = dx0 - (T)1.0 - SQUISH_CONSTANT; | |
} | |
if (!(c & 0x02)) { | |
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb; | |
dy_ext0 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext1 = dy_ext2 = dy0 - SQUISH_CONSTANT; | |
if (c & 0x01) { | |
ysv_ext1 -= 1; | |
dy_ext1 += (T)1.0; | |
} else { | |
ysv_ext2 -= 1; | |
dy_ext2 += (T)1.0; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1; | |
dy_ext0 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext1 = dy_ext2 = dy0 - (T)1.0 - SQUISH_CONSTANT; | |
} | |
if (!(c & 0x04)) { | |
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb; | |
dz_ext0 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
dz_ext1 = dz_ext2 = dz0 - SQUISH_CONSTANT; | |
if (c & 0x03) { | |
zsv_ext1 -= 1; | |
dz_ext1 += (T)1.0; | |
} else { | |
zsv_ext2 -= 1; | |
dz_ext2 += (T)1.0; | |
} | |
} else { | |
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1; | |
dz_ext0 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dz_ext1 = dz_ext2 = dz0 - (T)1.0 - SQUISH_CONSTANT; | |
} | |
if (!(c & 0x08)) { | |
wsv_ext0 = wsv_ext1 = wsb; | |
wsv_ext2 = wsb - 1; | |
dw_ext0 = dw0 - (SQUISH_CONSTANT * (T)2.0); | |
dw_ext1 = dw0 - SQUISH_CONSTANT; | |
dw_ext2 = dw0 + (T)1.0 - SQUISH_CONSTANT; | |
} else { | |
wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb + 1; | |
dw_ext0 = dw0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dw_ext1 = dw_ext2 = dw0 - (T)1.0 - SQUISH_CONSTANT; | |
} | |
} | |
// Contribution (0,0,0,0). | |
{ | |
T attn = pow2(dx0) + pow2(dy0) + pow2(dz0) + pow2(dw0); | |
value = pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb, ysb, zsb, wsb, dx0, dy0, dz0, dw0); | |
} | |
// Contribution (1,0,0,0). | |
T dx1 = dx0 - (T)1.0 - SQUISH_CONSTANT; | |
T dy1 = dy0 - SQUISH_CONSTANT; | |
T dz1 = dz0 - SQUISH_CONSTANT; | |
T dw1 = dw0 - SQUISH_CONSTANT; | |
{ | |
T attn = pow2(dx1) + pow2(dy1) + pow2(dz1) + pow2(dw1); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb + 1, ysb, zsb, wsb, dx1, dy1, dz1, dw1); | |
} | |
// Contribution (0,1,0,0). | |
T dx2 = dx0 - SQUISH_CONSTANT; | |
T dy2 = dy0 - (T)1.0 - SQUISH_CONSTANT; | |
T dz2 = dz1; | |
T dw2 = dw1; | |
{ | |
T attn = pow2(dx2) + pow2(dy2) + pow2(dz2) + pow2(dw2); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb, ysb + 1, zsb, wsb, dx2, dy2, dz2, dw2); | |
} | |
// Contribution (0,0,1,0). | |
{ | |
T dx3 = dx2; | |
T dy3 = dy1; | |
T dz3 = dz0 - (T)1.0 - SQUISH_CONSTANT; | |
T dw3 = dw1; | |
T attn = pow2(dx3) + pow2(dy3) + pow2(dz3) + pow2(dw3); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb, ysb, zsb + 1, wsb, dx3, dy3, dz3, dw3); | |
} | |
// Contribution (0,0,0,1). | |
{ | |
T dx4 = dx2; | |
T dy4 = dy1; | |
T dz4 = dz1; | |
T dw4 = dw0 - (T)1.0 - SQUISH_CONSTANT; | |
T attn = pow2(dx4) + pow2(dy4) + pow2(dz4) + pow2(dw4); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb, ysb, zsb, wsb + 1, dx4, dy4, dz4, dw4); | |
} | |
} else if (inSum >= 3.0) { | |
// Inside the pentachoron (4-simplex) at (1,1,1,1). | |
// Determine which two of (1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1) are closest. | |
OSN_BYTE aPoint = 0x0E; | |
T aScore = xins; | |
OSN_BYTE bPoint = 0x0D; | |
T bScore = yins; | |
if (aScore <= bScore && zins < bScore) { | |
bPoint = 0x0B; | |
bScore = zins; | |
} else if (aScore > bScore && zins < aScore) { | |
aPoint = 0x0B; | |
aScore = zins; | |
} | |
if (aScore <= bScore && wins < bScore) { | |
bPoint = 0x07; | |
bScore = wins; | |
} else if (aScore > bScore && wins < aScore) { | |
aPoint = 0x07; | |
aScore = wins; | |
} | |
// Determine the three lattice points not part of the pentachoron that may contribute. | |
// This depends on the closest two pentachoron vertices, including (0,0,0,0). | |
T uins = 4.0 - inSum; | |
if (uins < aScore || uins < bScore) { | |
// (1,1,1,1) is one of the closest two pentachoron vertices. | |
// The other closest vertex is the closest out of A and B. | |
OSN_BYTE c = (bScore < aScore ? bPoint : aPoint); | |
if (c & 0x01) { | |
xsv_ext0 = xsb + 2; | |
xsv_ext1 = xsv_ext2 = xsb + 1; | |
dx_ext0 = dx0 - (T)2.0 - (SQUISH_CONSTANT * 4); | |
dx_ext1 = dx_ext2 = dx0 - (T)1.0 - (SQUISH_CONSTANT * 4); | |
} else { | |
xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb; | |
dx_ext0 = dx_ext1 = dx_ext2 = dx0 - (SQUISH_CONSTANT * 4); | |
} | |
if (c & 0x02) { | |
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1; | |
dy_ext0 = dy_ext1 = dy_ext2 = dy0 - (T)1.0 - (SQUISH_CONSTANT * 4); | |
if (c & 0x01) { | |
ysv_ext1 += 1; | |
dy_ext1 -= (T)1.0; | |
} else { | |
ysv_ext0 += 1; | |
dy_ext0 -= (T)1.0; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb; | |
dy_ext0 = dy_ext1 = dy_ext2 = dy0 - (SQUISH_CONSTANT * 4); | |
} | |
if (c & 0x04) { | |
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1; | |
dz_ext0 = dz_ext1 = dz_ext2 = dz0 - (T)1.0 - (SQUISH_CONSTANT * 4); | |
if ((c & 0x03) != 0x03) { | |
if (!(c & 0x03)) { | |
zsv_ext0 += 1; | |
dz_ext0 -= (T)1.0; | |
} else { | |
zsv_ext1 += 1; | |
dz_ext1 -= (T)1.0; | |
} | |
} else { | |
zsv_ext2 += 1; | |
dz_ext2 -= (T)1.0; | |
} | |
} else { | |
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb; | |
dz_ext0 = dz_ext1 = dz_ext2 = dz0 - (SQUISH_CONSTANT * 4); | |
} | |
if (c & 0x08) { | |
wsv_ext0 = wsv_ext1 = wsb + 1; | |
wsv_ext2 = wsb + 2; | |
dw_ext0 = dw_ext1 = dw0 - (T)1.0 - (SQUISH_CONSTANT * 4); | |
dw_ext2 = dw0 - (T)2.0 - (SQUISH_CONSTANT * 4); | |
} else { | |
wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb; | |
dw_ext0 = dw_ext1 = dw_ext2 = dw0 - (SQUISH_CONSTANT * 4); | |
} | |
} else { | |
// (1,1,1,1) is not one of the closest two pentachoron vertices. | |
OSN_BYTE c = aPoint & bPoint; | |
if (c & 0x01) { | |
xsv_ext0 = xsv_ext2 = xsb + 1; | |
xsv_ext1 = xsb + 2; | |
dx_ext0 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dx_ext1 = dx0 - (T)2.0 - (SQUISH_CONSTANT * (T)3.0); | |
dx_ext2 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
} else { | |
xsv_ext0 = xsv_ext1 = xsv_ext2 = xsb; | |
dx_ext0 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
dx_ext1 = dx_ext2 = dx0 - (SQUISH_CONSTANT * (T)3.0); | |
} | |
if (c & 0x02) { | |
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb + 1; | |
dy_ext0 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext1 = dy_ext2 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
if (c & 0x01) { | |
ysv_ext2 += 1; | |
dy_ext2 -= (T)1.0; | |
} else { | |
ysv_ext1 += 1; | |
dy_ext1 -= (T)1.0; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysv_ext2 = ysb; | |
dy_ext0 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext1 = dy_ext2 = dy0 - (SQUISH_CONSTANT * (T)3.0); | |
} | |
if (c & 0x04) { | |
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb + 1; | |
dz_ext0 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dz_ext1 = dz_ext2 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
if (c & 0x03) { | |
zsv_ext2 += 1; | |
dz_ext2 -= (T)1.0; | |
} else { | |
zsv_ext1 += 1; | |
dz_ext1 -= (T)1.0; | |
} | |
} else { | |
zsv_ext0 = zsv_ext1 = zsv_ext2 = zsb; | |
dz_ext0 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
dz_ext1 = dz_ext2 = dz0 - (SQUISH_CONSTANT * (T)3.0); | |
} | |
if (c & 0x08) { | |
wsv_ext0 = wsv_ext1 = wsb + 1; | |
wsv_ext2 = wsb + 2; | |
dw_ext0 = dw0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dw_ext1 = dw0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
dw_ext2 = dw0 - (T)2.0 - (SQUISH_CONSTANT * (T)3.0); | |
} else { | |
wsv_ext0 = wsv_ext1 = wsv_ext2 = wsb; | |
dw_ext0 = dw0 - (SQUISH_CONSTANT * (T)2.0); | |
dw_ext1 = dw_ext2 = dw0 - (SQUISH_CONSTANT * (T)3.0); | |
} | |
} | |
// Contribution (1,1,1,0). | |
T dx4 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
T dy4 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
T dz4 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
T dw4 = dw0 - (SQUISH_CONSTANT * (T)3.0); | |
{ | |
T attn = pow2(dx4) + pow2(dy4) + pow2(dz4) + pow2(dw4); | |
value = pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb + 1, ysb + 1, zsb + 1, wsb, dx4, dy4, dz4, dw4); | |
} | |
// Contribution (1,1,0,1). | |
T dx3 = dx4; | |
T dy3 = dy4; | |
T dz3 = dz0 - (SQUISH_CONSTANT * (T)3.0); | |
T dw3 = dw0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
{ | |
T attn = pow2(dx3) + pow2(dy3) + pow2(dz3) + pow2(dw3); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb + 1, ysb + 1, zsb, wsb + 1, dx3, dy3, dz3, dw3); | |
} | |
// Contribution (1,0,1,1). | |
T dx2 = dx4; | |
T dy2 = dy0 - (SQUISH_CONSTANT * (T)3.0); | |
T dz2 = dz4; | |
T dw2 = dw3; | |
{ | |
T attn = pow2(dx2) + pow2(dy2) + pow2(dz2) + pow2(dw2); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb + 1, ysb, zsb + 1, wsb + 1, dx2, dy2, dz2, dw2); | |
} | |
// Contribution (0,1,1,1). | |
{ | |
T dx1 = dx0 - (SQUISH_CONSTANT * (T)3.0); | |
T dy1 = dy4; | |
T dz1 = dz4; | |
T dw1 = dw3; | |
T attn = pow2(dx1) + pow2(dy1) + pow2(dz1) + pow2(dw1); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb, ysb + 1, zsb + 1, wsb + 1, dx1, dy1, dz1, dw1); | |
} | |
// Contribution (1,1,1,1). | |
{ | |
dx0 = dx0 - (T)1.0 - (SQUISH_CONSTANT * 4); | |
dy0 = dy0 - (T)1.0 - (SQUISH_CONSTANT * 4); | |
dz0 = dz0 - (T)1.0 - (SQUISH_CONSTANT * 4); | |
dw0 = dw0 - (T)1.0 - (SQUISH_CONSTANT * 4); | |
T attn = pow2(dx0) + pow2(dy0) + pow2(dz0) + pow2(dw0); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb + 1, ysb + 1, zsb + 1, wsb + 1, dx0, dy0, dz0, dw0); | |
} | |
} else if (inSum <= (T)2.0) { | |
// Inside the first dispentachoron (rectified 4-simplex). | |
T aScore; | |
OSN_BYTE aPoint; | |
bool aIsBiggerSide = true; | |
T bScore; | |
OSN_BYTE bPoint; | |
bool bIsBiggerSide = true; | |
// Decide between (1,1,0,0) and (0,0,1,1). | |
if (xins + yins > zins + wins) { | |
aPoint = 0x03; | |
aScore = xins + yins; | |
} else { | |
aPoint = 0x0C; | |
aScore = zins + wins; | |
} | |
// Decide between (1,0,1,0) and (0,1,0,1). | |
if (xins + zins > yins + wins) { | |
bPoint = 0x05; | |
bScore = xins + zins; | |
} else { | |
bPoint = 0x0A; | |
bScore = yins + wins; | |
} | |
// Closer of (1,0,0,1) and (0,1,1,0) will replace the further of A and B, if closer. | |
if (xins + wins > yins + zins) { | |
T score = xins + wins; | |
if (aScore >= bScore && score > bScore) { | |
bPoint = 0x09; | |
bScore = score; | |
} else if (aScore < bScore && score > aScore) { | |
aPoint = 0x09; | |
aScore = score; | |
} | |
} else { | |
T score = yins + zins; | |
if (aScore >= bScore && score > bScore) { | |
bPoint = 0x06; | |
bScore = score; | |
} else if (aScore < bScore && score > aScore) { | |
aPoint = 0x06; | |
aScore = score; | |
} | |
} | |
// Decide if (1,0,0,0) is closer. | |
T p1 = (T)2.0 - inSum + xins; | |
if (aScore >= bScore && p1 > bScore) { | |
bPoint = 0x01; | |
bScore = p1; | |
bIsBiggerSide = false; | |
} else if (aScore < bScore && p1 > aScore) { | |
aPoint = 0x01; | |
aScore = p1; | |
aIsBiggerSide = false; | |
} | |
// Decide if (0,1,0,0) is closer. | |
T p2 = (T)2.0 - inSum + yins; | |
if (aScore >= bScore && p2 > bScore) { | |
bPoint = 0x02; | |
bScore = p2; | |
bIsBiggerSide = false; | |
} else if (aScore < bScore && p2 > aScore) { | |
aPoint = 0x02; | |
aScore = p2; | |
aIsBiggerSide = false; | |
} | |
// Decide if (0,0,1,0) is closer. | |
T p3 = (T)2.0 - inSum + zins; | |
if (aScore >= bScore && p3 > bScore) { | |
bPoint = 0x04; | |
bScore = p3; | |
bIsBiggerSide = false; | |
} else if (aScore < bScore && p3 > aScore) { | |
aPoint = 0x04; | |
aScore = p3; | |
aIsBiggerSide = false; | |
} | |
// Decide if (0,0,0,1) is closer. | |
T p4 = (T)2.0 - inSum + wins; | |
if (aScore >= bScore && p4 > bScore) { | |
bPoint = 0x08; | |
bScore = p4; | |
bIsBiggerSide = false; | |
} else if (aScore < bScore && p4 > aScore) { | |
aPoint = 0x08; | |
aScore = p4; | |
aIsBiggerSide = false; | |
} | |
// Where each of the two closest points are determines how the extra three vertices are calculated. | |
if (aIsBiggerSide == bIsBiggerSide) { | |
if (aIsBiggerSide) { | |
// Both closest points are on the bigger side. | |
OSN_BYTE c1 = aPoint | bPoint; | |
OSN_BYTE c2 = aPoint & bPoint; | |
if (!(c1 & 0x01)) { | |
xsv_ext0 = xsb; | |
xsv_ext1 = xsb - 1; | |
dx_ext0 = dx0 - (SQUISH_CONSTANT * (T)3.0); | |
dx_ext1 = dx0 + (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
} else { | |
xsv_ext0 = xsv_ext1 = xsb + 1; | |
dx_ext0 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
dx_ext1 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
} | |
if (!(c1 & 0x02)) { | |
ysv_ext0 = ysb; | |
ysv_ext1 = ysb - 1; | |
dy_ext0 = dy0 - (SQUISH_CONSTANT * (T)3.0); | |
dy_ext1 = dy0 + (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
} else { | |
ysv_ext0 = ysv_ext1 = ysb + 1; | |
dy_ext0 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
dy_ext1 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
} | |
if (!(c1 & 0x04)) { | |
zsv_ext0 = zsb; | |
zsv_ext1 = zsb - 1; | |
dz_ext0 = dz0 - (SQUISH_CONSTANT * (T)3.0); | |
dz_ext1 = dz0 + (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
} else { | |
zsv_ext0 = zsv_ext1 = zsb + 1; | |
dz_ext0 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
dz_ext1 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
} | |
if (!(c1 & 0x08)) { | |
wsv_ext0 = wsb; | |
wsv_ext1 = wsb - 1; | |
dw_ext0 = dw0 - (SQUISH_CONSTANT * (T)3.0); | |
dw_ext1 = dw0 + (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
} else { | |
wsv_ext0 = wsv_ext1 = wsb + 1; | |
dw_ext0 = dw0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
dw_ext1 = dw0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
} | |
// One combination is a permutation of (0,0,0,2) based on c2. | |
xsv_ext2 = xsb; | |
ysv_ext2 = ysb; | |
zsv_ext2 = zsb; | |
wsv_ext2 = wsb; | |
dx_ext2 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext2 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
dz_ext2 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
dw_ext2 = dw0 - (SQUISH_CONSTANT * (T)2.0); | |
if (c2 & 0x01) { | |
xsv_ext2 += 2; | |
dx_ext2 -= (T)2.0; | |
} else if (c2 & 0x02) { | |
ysv_ext2 += 2; | |
dy_ext2 -= (T)2.0; | |
} else if (c2 & 0x04) { | |
zsv_ext2 += 2; | |
dz_ext2 -= (T)2.0; | |
} else { | |
wsv_ext2 += 2; | |
dw_ext2 -= (T)2.0; | |
} | |
} else { | |
// Both closest points are on the smaller side. | |
// One of the two extra points is (0,0,0,0). | |
xsv_ext2 = xsb; | |
ysv_ext2 = ysb; | |
zsv_ext2 = zsb; | |
wsv_ext2 = wsb; | |
dx_ext2 = dx0; | |
dy_ext2 = dy0; | |
dz_ext2 = dz0; | |
dw_ext2 = dw0; | |
// The other two points are based on the omitted axes. | |
OSN_BYTE c = aPoint | bPoint; | |
if (!(c & 0x01)) { | |
xsv_ext0 = xsb - 1; | |
xsv_ext1 = xsb; | |
dx_ext0 = dx0 + (T)1.0 - SQUISH_CONSTANT; | |
dx_ext1 = dx0 - SQUISH_CONSTANT; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsb + 1; | |
dx_ext0 = dx_ext1 = dx0 - (T)1.0 - SQUISH_CONSTANT; | |
} | |
if (!(c & 0x02)) { | |
ysv_ext0 = ysv_ext1 = ysb; | |
dy_ext0 = dy_ext1 = dy0 - SQUISH_CONSTANT; | |
if (c & 0x01) { | |
ysv_ext0 -= 1; | |
dy_ext0 += (T)1.0; | |
} else { | |
ysv_ext1 -= 1; | |
dy_ext1 += (T)1.0; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysb + 1; | |
dy_ext0 = dy_ext1 = dy0 - (T)1.0 - SQUISH_CONSTANT; | |
} | |
if (!(c & 0x04)) { | |
zsv_ext0 = zsv_ext1 = zsb; | |
dz_ext0 = dz_ext1 = dz0 - SQUISH_CONSTANT; | |
if ((c & 0x03) == 0x03) | |
{ | |
zsv_ext0 -= 1; | |
dz_ext0 += (T)1.0; | |
} else { | |
zsv_ext1 -= 1; | |
dz_ext1 += (T)1.0; | |
} | |
} else { | |
zsv_ext0 = zsv_ext1 = zsb + 1; | |
dz_ext0 = dz_ext1 = dz0 - (T)1.0 - SQUISH_CONSTANT; | |
} | |
if (!(c & 0x08)) { | |
wsv_ext0 = wsb; | |
wsv_ext1 = wsb - 1; | |
dw_ext0 = dw0 - SQUISH_CONSTANT; | |
dw_ext1 = dw0 + (T)1.0 - SQUISH_CONSTANT; | |
} else { | |
wsv_ext0 = wsv_ext1 = wsb + 1; | |
dw_ext0 = dw_ext1 = dw0 - (T)1.0 - SQUISH_CONSTANT; | |
} | |
} | |
} else { | |
// One point on each side. | |
OSN_BYTE c1, c2; | |
if (aIsBiggerSide) { | |
c1 = aPoint; | |
c2 = bPoint; | |
} else { | |
c1 = bPoint; | |
c2 = aPoint; | |
} | |
// Two contributions are the bigger-sided point with each 0 replaced with -1. | |
if (!(c1 & 0x01)) { | |
xsv_ext0 = xsb - 1; | |
xsv_ext1 = xsb; | |
dx_ext0 = dx0 + (T)1.0 - SQUISH_CONSTANT; | |
dx_ext1 = dx0 - SQUISH_CONSTANT; | |
} else { | |
xsv_ext0 = xsv_ext1 = xsb + 1; | |
dx_ext0 = dx_ext1 = dx0 - (T)1.0 - SQUISH_CONSTANT; | |
} | |
if (!(c1 & 0x02)) { | |
ysv_ext0 = ysv_ext1 = ysb; | |
dy_ext0 = dy_ext1 = dy0 - SQUISH_CONSTANT; | |
if ((c1 & 0x01) == 0x01) { | |
ysv_ext0 -= 1; | |
dy_ext0 += (T)1.0; | |
} else { | |
ysv_ext1 -= 1; | |
dy_ext1 += (T)1.0; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysb + 1; | |
dy_ext0 = dy_ext1 = dy0 - (T)1.0 - SQUISH_CONSTANT; | |
} | |
if (!(c1 & 0x04)) { | |
zsv_ext0 = zsv_ext1 = zsb; | |
dz_ext0 = dz_ext1 = dz0 - SQUISH_CONSTANT; | |
if ((c1 & 0x03) == 0x03) { | |
zsv_ext0 -= 1; | |
dz_ext0 += (T)1.0; | |
} else { | |
zsv_ext1 -= 1; | |
dz_ext1 += (T)1.0; | |
} | |
} else { | |
zsv_ext0 = zsv_ext1 = zsb + 1; | |
dz_ext0 = dz_ext1 = dz0 - (T)1.0 - SQUISH_CONSTANT; | |
} | |
if (!(c1 & 0x08)) { | |
wsv_ext0 = wsb; | |
wsv_ext1 = wsb - 1; | |
dw_ext0 = dw0 - SQUISH_CONSTANT; | |
dw_ext1 = dw0 + (T)1.0 - SQUISH_CONSTANT; | |
} else { | |
wsv_ext0 = wsv_ext1 = wsb + 1; | |
dw_ext0 = dw_ext1 = dw0 - (T)1.0 - SQUISH_CONSTANT; | |
} | |
// One contribution is a permutation of (0,0,0,2) based on the smaller-sided point. | |
xsv_ext2 = xsb; | |
ysv_ext2 = ysb; | |
zsv_ext2 = zsb; | |
wsv_ext2 = wsb; | |
dx_ext2 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext2 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
dz_ext2 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
dw_ext2 = dw0 - (SQUISH_CONSTANT * (T)2.0); | |
if ((c2 & 0x01) != 0) { | |
xsv_ext2 += 2; | |
dx_ext2 -= (T)2.0; | |
} else if ((c2 & 0x02) != 0) { | |
ysv_ext2 += 2; | |
dy_ext2 -= (T)2.0; | |
} else if ((c2 & 0x04) != 0) { | |
zsv_ext2 += 2; | |
dz_ext2 -= (T)2.0; | |
} else { | |
wsv_ext2 += 2; | |
dw_ext2 -= (T)2.0; | |
} | |
} | |
//Contribution (1,0,0,0). | |
T dx1 = dx0 - (T)1.0 - SQUISH_CONSTANT; | |
T dy1 = dy0 - SQUISH_CONSTANT; | |
T dz1 = dz0 - SQUISH_CONSTANT; | |
T dw1 = dw0 - SQUISH_CONSTANT; | |
{ | |
T attn = pow2(dx1) + pow2(dy1) + pow2(dz1) + pow2(dw1); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb + 1, ysb, zsb, wsb, dx1, dy1, dz1, dw1); | |
} | |
//Contribution (0,1,0,0). | |
T dx2 = dx0 - SQUISH_CONSTANT; | |
T dy2 = dy0 - (T)1.0 - SQUISH_CONSTANT; | |
T dz2 = dz1; | |
T dw2 = dw1; | |
{ | |
T attn = pow2(dx2) + pow2(dy2) + pow2(dz2) + pow2(dw2); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb, ysb + 1, zsb, wsb, dx2, dy2, dz2, dw2); | |
} | |
//Contribution (0,0,1,0). | |
{ | |
T dx3 = dx2; | |
T dy3 = dy1; | |
T dz3 = dz0 - (T)1.0 - SQUISH_CONSTANT; | |
T dw3 = dw1; | |
T attn = pow2(dx3) + pow2(dy3) + pow2(dz3) + pow2(dw3); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb, ysb, zsb + 1, wsb, dx3, dy3, dz3, dw3); | |
} | |
//Contribution (0,0,0,1). | |
{ | |
T dx4 = dx2; | |
T dy4 = dy1; | |
T dz4 = dz1; | |
T dw4 = dw0 - (T)1.0 - SQUISH_CONSTANT; | |
T attn = pow2(dx4) + pow2(dy4) + pow2(dz4) + pow2(dw4); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb, ysb, zsb, wsb + 1, dx4, dy4, dz4, dw4); | |
} | |
//Contribution (1,1,0,0). | |
{ | |
T dx5 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dy5 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dz5 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
T dw5 = dw0 - (SQUISH_CONSTANT * (T)2.0); | |
T attn = pow2(dx5) + pow2(dy5) + pow2(dz5) + pow2(dw5); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb + 1, ysb + 1, zsb, wsb, dx5, dy5, dz5, dw5); | |
} | |
//Contribution (1,0,1,0). | |
{ | |
T dx6 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dy6 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
T dz6 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dw6 = dw0 - (SQUISH_CONSTANT * (T)2.0); | |
T attn = pow2(dx6) + pow2(dy6) + pow2(dz6) + pow2(dw6); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb + 1, ysb, zsb + 1, wsb, dx6, dy6, dz6, dw6); | |
} | |
//Contribution (1,0,0,1). | |
{ | |
T dx7 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dy7 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
T dz7 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
T dw7 = dw0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T attn = pow2(dx7) + pow2(dy7) + pow2(dz7) + pow2(dw7); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb + 1, ysb, zsb, wsb + 1, dx7, dy7, dz7, dw7); | |
} | |
// Contribution (0,1,1,0). | |
{ | |
T dx8 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
T dy8 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dz8 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dw8 = dw0 - (SQUISH_CONSTANT * (T)2.0); | |
T attn = pow2(dx8) + pow2(dy8) + pow2(dz8) + pow2(dw8); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb, ysb + 1, zsb + 1, wsb, dx8, dy8, dz8, dw8); | |
} | |
// Contribution (0,1,0,1). | |
{ | |
T dx9 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
T dy9 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dz9 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
T dw9 = dw0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T attn = pow2(dx9) + pow2(dy9) + pow2(dz9) + pow2(dw9); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb, ysb + 1, zsb, wsb + 1, dx9, dy9, dz9, dw9); | |
} | |
// Contribution (0,0,1,1). | |
{ | |
T dx10 = dx0 - 2 * SQUISH_CONSTANT; | |
T dy10 = dy0 - 2 * SQUISH_CONSTANT; | |
T dz10 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dw10 = dw0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T attn = pow2(dx10) + pow2(dy10) + pow2(dz10) + pow2(dw10); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb, ysb, zsb + 1, wsb + 1, dx10, dy10, dz10, dw10); | |
} | |
} else { | |
// Inside the second dispentachoron (rectified 4-simplex). | |
OSN_BYTE aPoint, bPoint; | |
T aScore, bScore; | |
bool aIsBiggerSide(true), bIsBiggerSide(true); | |
// Decide between (0,0,1,1) and (1,1,0,0). | |
if (xins + yins < zins + wins) { | |
aPoint = 0x0C; | |
aScore = xins + yins; | |
} else { | |
aPoint = 0x03; | |
aScore = zins + wins; | |
} | |
//Decide between (0,1,0,1) and (1,0,1,0). | |
if (xins + zins < yins + wins) { | |
bPoint = 0x0A; | |
bScore = xins + zins; | |
} else { | |
bPoint = 0x05; | |
bScore = yins + wins; | |
} | |
// The closer of (0,1,1,0) and (1,0,0,1) will replace the further of a and b, if closer. | |
if (xins + wins < yins + zins) { | |
T score(xins + wins); | |
if (aScore <= bScore && score < bScore) { | |
bPoint = 0x06; | |
bScore = score; | |
} else if (aScore > bScore && score < aScore) { | |
aPoint = 0x06; | |
aScore = score; | |
} | |
} else { | |
T score(yins + zins); | |
if (aScore <= bScore && score < bScore) { | |
bPoint = 0x09; | |
bScore = score; | |
} else if (aScore > bScore && score < aScore) { | |
aPoint = 0x09; | |
aScore = score; | |
} | |
} | |
// Decide if (0,1,1,1) is closer. | |
{ | |
T p1 = 3.0 - inSum + xins; | |
if (aScore <= bScore && p1 < bScore) { | |
bPoint = 0x0E; | |
bScore = p1; | |
bIsBiggerSide = false; | |
} else if (aScore > bScore && p1 < aScore) { | |
aPoint = 0x0E; | |
aScore = p1; | |
aIsBiggerSide = false; | |
} | |
} | |
// Decide if (1,0,1,1) is closer. | |
{ | |
T p2 = 3.0 - inSum + yins; | |
if (aScore <= bScore && p2 < bScore) { | |
bPoint = 0x0D; | |
bScore = p2; | |
bIsBiggerSide = false; | |
} else if (aScore > bScore && p2 < aScore) { | |
aPoint = 0x0D; | |
aScore = p2; | |
aIsBiggerSide = false; | |
} | |
} | |
// Decide if (1,1,0,1) is closer. | |
{ | |
T p3 = 3.0 - inSum + zins; | |
if (aScore <= bScore && p3 < bScore) { | |
bPoint = 0x0B; | |
bScore = p3; | |
bIsBiggerSide = false; | |
} else if (aScore > bScore && p3 < aScore) { | |
aPoint = 0x0B; | |
aScore = p3; | |
aIsBiggerSide = false; | |
} | |
} | |
// Decide if (1,1,1,0) is closer. | |
{ | |
T p4 = 3.0 - inSum + wins; | |
if (aScore <= bScore && p4 < bScore) { | |
bPoint = 0x07; | |
bScore = p4; | |
bIsBiggerSide = false; | |
} else if (aScore > bScore && p4 < aScore) { | |
aPoint = 0x07; | |
aScore = p4; | |
aIsBiggerSide = false; | |
} | |
} | |
// Where each of the two closest points are determines how the extra three vertices are calculated. | |
if (aIsBiggerSide == bIsBiggerSide) { | |
if (aIsBiggerSide) { | |
// Both closest points are on the bigger side. | |
OSN_BYTE c1 = aPoint & bPoint; | |
OSN_BYTE c2 = aPoint | bPoint; | |
// Two contributions are permutations of (0,0,0,1) and (0,0,0,2) based on c1. | |
xsv_ext0 = xsv_ext1 = xsb; | |
ysv_ext0 = ysv_ext1 = ysb; | |
zsv_ext0 = zsv_ext1 = zsb; | |
wsv_ext0 = wsv_ext1 = wsb; | |
dx_ext0 = dx0 - SQUISH_CONSTANT; | |
dy_ext0 = dy0 - SQUISH_CONSTANT; | |
dz_ext0 = dz0 - SQUISH_CONSTANT; | |
dw_ext0 = dw0 - SQUISH_CONSTANT; | |
dx_ext1 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext1 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
dz_ext1 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
dw_ext1 = dw0 - (SQUISH_CONSTANT * (T)2.0); | |
if (c1 & 0x01) { | |
xsv_ext0 += 1; | |
dx_ext0 -= (T)1.0; | |
xsv_ext1 += 2; | |
dx_ext1 -= (T)2.0; | |
} else if (c1 & 0x02) { | |
ysv_ext0 += 1; | |
dy_ext0 -= (T)1.0; | |
ysv_ext1 += 2; | |
dy_ext1 -= (T)2.0; | |
} else if (c1 & 0x04) { | |
zsv_ext0 += 1; | |
dz_ext0 -= (T)1.0; | |
zsv_ext1 += 2; | |
dz_ext1 -= (T)2.0; | |
} else { | |
wsv_ext0 += 1; | |
dw_ext0 -= (T)1.0; | |
wsv_ext1 += 2; | |
dw_ext1 -= (T)2.0; | |
} | |
// One contribution is a permutation of (1,1,1,-1) based on c2. | |
xsv_ext2 = xsb + 1; | |
ysv_ext2 = ysb + 1; | |
zsv_ext2 = zsb + 1; | |
wsv_ext2 = wsb + 1; | |
dx_ext2 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext2 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dz_ext2 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dw_ext2 = dw0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
if (!(c2 & 0x01)) { | |
xsv_ext2 -= 2; | |
dx_ext2 += (T)2.0; | |
} else if (!(c2 & 0x02)) { | |
ysv_ext2 -= 2; | |
dy_ext2 += (T)2.0; | |
} else if (!(c2 & 0x04)) { | |
zsv_ext2 -= 2; | |
dz_ext2 += (T)2.0; | |
} else { | |
wsv_ext2 -= 2; | |
dw_ext2 += (T)2.0; | |
} | |
} else { | |
// Both closest points are on the smaller side. | |
// One of the two extra points is (1,1,1,1). | |
xsv_ext2 = xsb + 1; | |
ysv_ext2 = ysb + 1; | |
zsv_ext2 = zsb + 1; | |
wsv_ext2 = wsb + 1; | |
dx_ext2 = dx0 - (T)1.0 - (SQUISH_CONSTANT * 4); | |
dy_ext2 = dy0 - (T)1.0 - (SQUISH_CONSTANT * 4); | |
dz_ext2 = dz0 - (T)1.0 - (SQUISH_CONSTANT * 4); | |
dw_ext2 = dw0 - (T)1.0 - (SQUISH_CONSTANT * 4); | |
// The other two points are based on the shared axes. | |
OSN_BYTE c = aPoint & bPoint; | |
if (c & 0x01) { | |
xsv_ext0 = xsb + 2; | |
xsv_ext1 = xsb + 1; | |
dx_ext0 = dx0 - (T)2.0 - (SQUISH_CONSTANT * (T)3.0); | |
dx_ext1 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
} else { | |
xsv_ext0 = xsv_ext1 = xsb; | |
dx_ext0 = dx_ext1 = dx0 - (SQUISH_CONSTANT * (T)3.0); | |
} | |
if (c & 0x02) { | |
ysv_ext0 = ysv_ext1 = ysb + 1; | |
dy_ext0 = dy_ext1 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
if (!(c & 0x01)) { | |
ysv_ext0 += 1; | |
dy_ext0 -= (T)1.0; | |
} else { | |
ysv_ext1 += 1; | |
dy_ext1 -= (T)1.0; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysb; | |
dy_ext0 = dy_ext1 = dy0 - (SQUISH_CONSTANT * (T)3.0); | |
} | |
if (c & 0x04) { | |
zsv_ext0 = zsv_ext1 = zsb + 1; | |
dz_ext0 = dz_ext1 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
if (!(c & 0x03)) { | |
zsv_ext0 += 1; | |
dz_ext0 -= (T)1.0; | |
} else { | |
zsv_ext1 += 1; | |
dz_ext1 -= (T)1.0; | |
} | |
} else { | |
zsv_ext0 = zsv_ext1 = zsb; | |
dz_ext0 = dz_ext1 = dz0 - (SQUISH_CONSTANT * (T)3.0); | |
} | |
if (c & 0x08) { | |
wsv_ext0 = wsb + 1; | |
wsv_ext1 = wsb + 2; | |
dw_ext0 = dw0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
dw_ext1 = dw0 - (T)2.0 - (SQUISH_CONSTANT * (T)3.0); | |
} else { | |
wsv_ext0 = wsv_ext1 = wsb; | |
dw_ext0 = dw_ext1 = dw0 - (SQUISH_CONSTANT * (T)3.0); | |
} | |
} | |
} else { | |
// One point on each "side". | |
OSN_BYTE c1, c2; | |
if (aIsBiggerSide) { | |
c1 = aPoint; | |
c2 = bPoint; | |
} else { | |
c1 = bPoint; | |
c2 = aPoint; | |
} | |
// Two contributions are the bigger-sided point with each 1 replaced with 2. | |
if (c1 & 0x01) { | |
xsv_ext0 = xsb + 2; | |
xsv_ext1 = xsb + 1; | |
dx_ext0 = dx0 - (T)2.0 - (SQUISH_CONSTANT * (T)3.0); | |
dx_ext1 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
} else { | |
xsv_ext0 = xsv_ext1 = xsb; | |
dx_ext0 = dx_ext1 = dx0 - (SQUISH_CONSTANT * (T)3.0); | |
} | |
if (c1 & 0x02) { | |
ysv_ext0 = ysv_ext1 = ysb + 1; | |
dy_ext0 = dy_ext1 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
if (!(c1 & 0x01)) { | |
ysv_ext0 += 1; | |
dy_ext0 -= (T)1.0; | |
} else { | |
ysv_ext1 += 1; | |
dy_ext1 -= (T)1.0; | |
} | |
} else { | |
ysv_ext0 = ysv_ext1 = ysb; | |
dy_ext0 = dy_ext1 = dy0 - (SQUISH_CONSTANT * (T)3.0); | |
} | |
if (c1 & 0x04) { | |
zsv_ext0 = zsv_ext1 = zsb + 1; | |
dz_ext0 = dz_ext1 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
if (!(c1 & 0x03)) { | |
zsv_ext0 += 1; | |
dz_ext0 -= (T)1.0; | |
} else { | |
zsv_ext1 += 1; | |
dz_ext1 -= (T)1.0; | |
} | |
} else { | |
zsv_ext0 = zsv_ext1 = zsb; | |
dz_ext0 = dz_ext1 = dz0 - 3 * (SQUISH_CONSTANT * (T)3.0); | |
} | |
if (c1 & 0x08) { | |
wsv_ext0 = wsb + 1; | |
wsv_ext1 = wsb + 2; | |
dw_ext0 = dw0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
dw_ext1 = dw0 - (T)2.0 - (SQUISH_CONSTANT * (T)3.0); | |
} else { | |
wsv_ext0 = wsv_ext1 = wsb; | |
dw_ext0 = dw_ext1 = dw0 - (SQUISH_CONSTANT * (T)3.0); | |
} | |
// One contribution is a permutation of (1,1,1,-1) based on the smaller-sided point. | |
xsv_ext2 = xsb + 1; | |
ysv_ext2 = ysb + 1; | |
zsv_ext2 = zsb + 1; | |
wsv_ext2 = wsb + 1; | |
dx_ext2 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dy_ext2 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dz_ext2 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
dw_ext2 = dw0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
if (!(c2 & 0x01)) { | |
xsv_ext2 -= 2; | |
dx_ext2 += (T)2.0; | |
} else if (!(c2 & 0x02)) { | |
ysv_ext2 -= 2; | |
dy_ext2 += (T)2.0; | |
} else if (!(c2 & 0x04)) { | |
zsv_ext2 -= 2; | |
dz_ext2 += (T)2.0; | |
} else { | |
wsv_ext2 -= 2; | |
dw_ext2 += (T)2.0; | |
} | |
} | |
// Contribution (1,1,1,0). | |
T dx4 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
T dy4 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
T dz4 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
T dw4 = dw0 - (SQUISH_CONSTANT * (T)3.0); | |
{ | |
T attn = pow2(dx4) + pow2(dy4) + pow2(dz4) + pow2(dw4); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb + 1, ysb + 1, zsb + 1, wsb, dx4, dy4, dz4, dw4); | |
} | |
//Contribution (1,1,0,1). | |
T dx3 = dx4; | |
T dy3 = dy4; | |
T dz3 = dz0 - (SQUISH_CONSTANT * (T)3.0); | |
T dw3 = dw0 - (T)1.0 - (SQUISH_CONSTANT * (T)3.0); | |
{ | |
T attn = pow2(dx3) + pow2(dy3) + pow2(dz3) + pow2(dw3); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb + 1, ysb + 1, zsb, wsb + 1, dx3, dy3, dz3, dw3); | |
} | |
// Contribution (1,0,1,1). | |
{ | |
T dx2 = dx4; | |
T dy2 = dy0 - (SQUISH_CONSTANT * (T)3.0); | |
T dz2 = dz4; | |
T dw2 = dw3; | |
T attn = pow2(dx2) + pow2(dy2) + pow2(dz2) + pow2(dw2); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb + 1, ysb, zsb + 1, wsb + 1, dx2, dy2, dz2, dw2); | |
} | |
// Contribution (0,1,1,1). | |
{ | |
T dx1 = dx0 - (SQUISH_CONSTANT * (T)3.0); | |
T dz1 = dz4; | |
T dy1 = dy4; | |
T dw1 = dw3; | |
T attn = pow2(dx1) + pow2(dy1) + pow2(dz1) + pow2(dw1); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb, ysb + 1, zsb + 1, wsb + 1, dx1, dy1, dz1, dw1); | |
} | |
// Contribution (1,1,0,0). | |
{ | |
T dx5 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dy5 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dz5 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
T dw5 = dw0 - (SQUISH_CONSTANT * (T)2.0); | |
T attn = pow2(dx5) + pow2(dy5) + pow2(dz5) + pow2(dw5); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb + 1, ysb + 1, zsb, wsb, dx5, dy5, dz5, dw5); | |
} | |
// Contribution (1,0,1,0). | |
{ | |
T dx6 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dy6 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
T dz6 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dw6 = dw0 - (SQUISH_CONSTANT * (T)2.0); | |
T attn = pow2(dx6) + pow2(dy6) + pow2(dz6) + pow2(dw6); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb + 1, ysb, zsb + 1, wsb, dx6, dy6, dz6, dw6); | |
} | |
// Contribution (1,0,0,1). | |
{ | |
T dx7 = dx0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dy7 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
T dz7 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
T dw7 = dw0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T attn = pow2(dx7) + pow2(dy7) + pow2(dz7) + pow2(dw7); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb + 1, ysb, zsb, wsb + 1, dx7, dy7, dz7, dw7); | |
} | |
// Contribution (0,1,1,0). | |
{ | |
T dx8 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
T dy8 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dz8 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dw8 = dw0 - (SQUISH_CONSTANT * (T)2.0); | |
T attn = pow2(dx8) + pow2(dy8) + pow2(dz8) + pow2(dw8); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb, ysb + 1, zsb + 1, wsb, dx8, dy8, dz8, dw8); | |
} | |
// Contribution (0,1,0,1). | |
{ | |
T dx9 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
T dy9 = dy0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dz9 = dz0 - (SQUISH_CONSTANT * (T)2.0); | |
T dw9 = dw0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T attn = pow2(dx9) + pow2(dy9) + pow2(dz9) + pow2(dw9); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb, ysb + 1, zsb, wsb + 1, dx9, dy9, dz9, dw9); | |
} | |
// Contribution (0,0,1,1). | |
{ | |
T dx10 = dx0 - (SQUISH_CONSTANT * (T)2.0); | |
T dy10 = dy0 - (SQUISH_CONSTANT * (T)2.0); | |
T dz10 = dz0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T dw10 = dw0 - (T)1.0 - (SQUISH_CONSTANT * (T)2.0); | |
T attn = pow2(dx10) + pow2(dy10) + pow2(dz10) + pow2(dw10); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsb, ysb, zsb + 1, wsb + 1, dx10, dy10, dz10, dw10); | |
} | |
} | |
// First extra vertex. | |
{ | |
T attn = pow2(dx_ext0) + pow2(dy_ext0) + pow2(dz_ext0) + pow2(dw_ext0); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsv_ext0, ysv_ext0, zsv_ext0, wsv_ext0, dx_ext0, dy_ext0, dz_ext0, dw_ext0); | |
} | |
// Second extra vertex. | |
{ | |
T attn = pow2(dx_ext1) + pow2(dy_ext1) + pow2(dz_ext1) + pow2(dw_ext1); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsv_ext1, ysv_ext1, zsv_ext1, wsv_ext1, dx_ext1, dy_ext1, dz_ext1, dw_ext1); | |
} | |
// Third extra vertex. | |
{ | |
T attn = pow2(dx_ext2) + pow2(dy_ext2) + pow2(dz_ext2) + pow2(dw_ext2); | |
value += pow4(std::max((T)2.0 - attn, (T)0.0)) * extrapolate(xsv_ext2, ysv_ext2, zsv_ext2, wsv_ext2, dx_ext2, dy_ext2, dz_ext2, dw_ext2); | |
} | |
return (value * NORM_CONSTANT); | |
} | |
}; | |
// Array of gradient values for 4D. They approximate the directions to the | |
// vertices of a disprismatotesseractihexadecachoron from its center, skewed so that the | |
// tetrahedral and cubic facets can be inscribed in spheres of the same radius. | |
// Gradient set 2014-10-06. | |
const int Noise<4>::gradients [] = { | |
3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, | |
-3, 1, 1, 1, -1, 3, 1, 1, -1, 1, 3, 1, -1, 1, 1, 3, | |
3,-1, 1, 1, 1,-3, 1, 1, 1,-1, 3, 1, 1,-1, 1, 3, | |
-3,-1, 1, 1, -1,-3, 1, 1, -1,-1, 3, 1, -1,-1, 1, 3, | |
3, 1,-1, 1, 1, 3,-1, 1, 1, 1,-3, 1, 1, 1,-1, 3, | |
-3, 1,-1, 1, -1, 3,-1, 1, -1, 1,-3, 1, -1, 1,-1, 3, | |
3,-1,-1, 1, 1,-3,-1, 1, 1,-1,-3, 1, 1,-1,-1, 3, | |
-3,-1,-1, 1, -1,-3,-1, 1, -1,-1,-3, 1, -1,-1,-1, 3, | |
3, 1, 1,-1, 1, 3, 1,-1, 1, 1, 3,-1, 1, 1, 1,-3, | |
-3, 1, 1,-1, -1, 3, 1,-1, -1, 1, 3,-1, -1, 1, 1,-3, | |
3,-1, 1,-1, 1,-3, 1,-1, 1,-1, 3,-1, 1,-1, 1,-3, | |
-3,-1, 1,-1, -1,-3, 1,-1, -1,-1, 3,-1, -1,-1, 1,-3, | |
3, 1,-1,-1, 1, 3,-1,-1, 1, 1,-3,-1, 1, 1,-1,-3, | |
-3, 1,-1,-1, -1, 3,-1,-1, -1, 1,-3,-1, -1, 1,-1,-3, | |
3,-1,-1,-1, 1,-3,-1,-1, 1,-1,-3,-1, 1,-1,-1,-3, | |
-3,-1,-1,-1, -1,-3,-1,-1, -1,-1,-3,-1, -1,-1,-1,-3 | |
}; | |
} | |
#else | |
#pragma message("OpenSimplexNoise.hh included multiple times") | |
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
* OpenSimplex (Simplectic) Noise Test in C++ | |
* by Arthur Tombs | |
* | |
* Modified 2014-12-04 | |
* | |
* This file is intended to test the function of OpenSimplexNoise.hh | |
* by creating example images of 2D, 3D and 4D noise. | |
* It requires that you have development packages for libpng installed. | |
* | |
* Compile with: | |
* g++ -o OpenSimplexNoiseTest -O2 OpenSimplexNoiseTest.cc -lpng | |
* | |
* Additional optimization can be obtained with -Ofast (at the cost of accuracy) | |
* and -msse4 (or the highest level of SSE your CPU supports). | |
*/ | |
#include <png.h> | |
#include <cmath> | |
#include <iostream> | |
#include "OpenSimplexNoise.hh" | |
const int WIDTH = 512; | |
const int HEIGHT = 512; | |
const double FEATURE_SIZE = 24.0; | |
int write_image (const char * fname, double * data) { | |
int retval = 0; | |
FILE * fp; | |
png_structp png_ptr; | |
png_infop info_ptr = NULL; | |
fp = fopen(fname, "wb"); | |
if (fp == NULL) { | |
std::cerr << "Error: Failed to open file '" << fname << "' for writing" << std::endl; | |
retval = 1; | |
goto finish; | |
} | |
png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, NULL); | |
if (png_ptr == NULL) { | |
std::cerr << "Error: Failed to allocate libpng write struct" << std::endl; | |
retval = 2; | |
goto finish; | |
} | |
info_ptr = png_create_info_struct(png_ptr); | |
if (info_ptr == NULL) { | |
std::cerr << "Error: Failed to allocate libpng info struct" << std::endl; | |
retval = 3; | |
goto finish; | |
} | |
if (setjmp(png_jmpbuf(png_ptr))) { | |
std::cerr << "Error: Failed to set libpng jump points" << std::endl; | |
retval = 4; | |
goto finish; | |
} | |
png_init_io(png_ptr, fp); | |
png_set_IHDR(png_ptr, info_ptr, WIDTH, HEIGHT, 8, PNG_COLOR_TYPE_GRAY, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_BASE, PNG_FILTER_TYPE_BASE); | |
png_write_info(png_ptr, info_ptr); | |
for (int y = 0; y < HEIGHT; y++) { | |
png_byte row [WIDTH]; | |
for (int x = 0; x < WIDTH; x++) { | |
png_byte rgbval = (png_byte)(std::min((data[x+y*WIDTH] + 1.0) * 128.0, 255.0)); | |
row[x] = rgbval; | |
} | |
png_write_row(png_ptr, row); | |
} | |
png_write_end(png_ptr, NULL); | |
finish: | |
if (fp != NULL) fclose(fp); | |
if (info_ptr != NULL) png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1); | |
if (png_ptr != NULL) png_destroy_write_struct(&png_ptr, NULL); | |
return retval; | |
} | |
int main (void) { | |
double * data = new double [WIDTH * HEIGHT]; | |
OSN::Noise<2> noise; | |
for (int yi = 0; yi < HEIGHT; ++yi) { | |
double y = yi / FEATURE_SIZE; | |
for (int xi = 0; xi < WIDTH; ++xi) { | |
double x = xi / FEATURE_SIZE; | |
data[xi+yi*WIDTH] = noise.eval(x, y); | |
} | |
} | |
write_image("noise2.png", data); | |
return 0; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment