Created
July 29, 2021 10:44
-
-
Save tommylees112/c478f6b645f92409623b9609254d168d to your computer and use it in GitHub Desktop.
Save load pandas / xarray objects
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
frmo typing import Dict, Union | |
import xarray as xr | |
import pandas as pd | |
from pathlib import Path | |
def save_scaler(scaler: Dict[str, Union[xr.Dataset, pd.DataFrame]], run_dir: Path) -> None: | |
"""Save scaler to disk as separate netcdf files""" | |
scaler_dir = run_dir / "train_data" | |
for k, v in scaler.items(): | |
if isinstance(v, xr.Dataset) or isinstance(v, xr.DataArray): | |
v.to_netcdf(scaler_dir / f"{k.lower().replace(' ', '_')}.nc") | |
if isinstance(v, pd.DataFrame) or isinstance(v, pd.Series): | |
v.to_csv(scaler_dir / f"{k.lower().replace(' ', '_')}.csv") | |
def load_scaler(run_dir: Path) -> Dict[str, Union[xr.Dataset, pd.DataFrame]]: | |
scaler_dir = run_dir / "train_data" | |
scaler = {} | |
scaler_netcdf_paths = [p for p in scaler_dir.glob("*.nc") if any([test in p.name for test in ["scale", "center", "stds", "means"]])] | |
scaler_netcdf_keys = [p.name.split(".")[0] for p in scaler_netcdf_paths] | |
scaler_csv_paths = [p for p in scaler_dir.glob("*.csv") if any([test in p.name for test in ["scale", "center", "stds", "means"]])] | |
scaler_csv_keys = [p.name.split(".")[0] for p in scaler_csv_paths] | |
# load netcdf keys | |
for k, p in zip(scaler_netcdf_keys, scaler_netcdf_paths): | |
scaler[k] = xr.open_dataset(p) | |
# load pandas series | |
for k, p in zip(scaler_csv_keys, scaler_csv_paths): | |
scaler[k] = pd.read_csv(p, index_col=0) | |
return scaler |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment