Created
September 10, 2019 09:48
-
-
Save tomonari-masada/1ce8bc1cf594b69bc4d3480d734c4aba to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pyknp import Juman | |
import torch | |
from pytorch_transformers import * | |
config = BertConfig.from_json_file('Japanese_L-12_H-768_A-12_E-30_BPE/bert_config.json') | |
model = BertForMaskedLM.from_pretrained('Japanese_L-12_H-768_A-12_E-30_BPE/pytorch_model.bin', | |
config=config) | |
tokenizer = BertTokenizer('Japanese_L-12_H-768_A-12_E-30_BPE/vocab.txt', | |
do_lower_case=False, do_basic_tokenize=False) | |
jumanpp = Juman() | |
text = "僕は友達とサッカーをすることが好きだ。" | |
result = jumanpp.analysis(text) | |
tokenized_text = [mrph.midasi for mrph in result.mrph_list()] | |
tokenized_text = [tokenizer.cls_token] + tokenized_text + [tokenizer.sep_token] | |
model.eval() | |
model.to('cuda') | |
for masked_index in range(1, len(tokenized_text) - 1): | |
temp_text = [w for w in tokenized_text] | |
temp_text[masked_index] = tokenizer.mask_token | |
tokens_tensor = torch.tensor([tokenizer.convert_tokens_to_ids(temp_text)]).to('cuda') | |
with torch.no_grad(): | |
outputs = model(tokens_tensor) | |
predictions = outputs[0] | |
_, predicted_indexes = torch.topk(predictions[0, masked_index], k=5) | |
predicted_tokens = tokenizer.convert_ids_to_tokens(predicted_indexes.tolist()) | |
print(temp_text) | |
print(predicted_tokens) | |
print('-' * 32) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment