Created
May 18, 2016 14:35
-
-
Save tomonari-masada/36e4683a3ee213c888cc7e03b567d658 to your computer and use it in GitHub Desktop.
approximating the normal distribution with GAN
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import tensorflow as tf | |
import numpy as np | |
import matplotlib.pyplot as plt | |
mu,sigma=5.0,0.2 | |
latent_dim=2 | |
def mlp(input): | |
w1=tf.get_variable("w1", [input.get_shape()[1], 8], initializer=tf.random_normal_initializer()) | |
b1=tf.get_variable("b1", [8], initializer=tf.constant_initializer(0.1)) | |
w2=tf.get_variable("w2", [8,8], initializer=tf.random_normal_initializer()) | |
b2=tf.get_variable("b2", [8], initializer=tf.constant_initializer(0.1)) | |
w3=tf.get_variable("w3", [8,8], initializer=tf.random_normal_initializer()) | |
b3=tf.get_variable("b3", [8], initializer=tf.constant_initializer(0.1)) | |
w4=tf.get_variable("w4", [8,8], initializer=tf.random_normal_initializer()) | |
b4=tf.get_variable("b4", [8], initializer=tf.constant_initializer(0.0)) | |
w_=tf.get_variable("w_", [8,1], initializer=tf.random_normal_initializer()) | |
b_=tf.get_variable("b_", [1], initializer=tf.constant_initializer(0.0)) | |
fc1=tf.nn.dropout(tf.nn.relu(tf.matmul(input,w1)+b1),0.5) | |
fc2=tf.nn.dropout(tf.nn.relu(tf.matmul(fc1,w2)+b2),0.5) | |
fc3=tf.nn.dropout(tf.nn.relu(tf.matmul(fc2,w3)+b3),0.5) | |
fc4=tf.nn.tanh(tf.matmul(fc3,w4)+b4) | |
fc_=tf.matmul(fc4,w_)+b_ | |
out=fc_ | |
out_s=tf.sigmoid(fc_) | |
return out,out_s,[w1,b1,w2,b2,w3,b3,w4,b4,w_,b_] | |
def optimizer(loss,var_list): | |
return tf.train.AdamOptimizer().minimize(loss,var_list=var_list) | |
with tf.variable_scope("G"): | |
z_node=tf.placeholder(tf.float32, [None,latent_dim]) | |
G,_,theta_g=mlp(z_node) | |
with tf.variable_scope("D") as scope: | |
x_node=tf.placeholder(tf.float32, [None,1]) | |
_,D1,theta_d=mlp(x_node) | |
scope.reuse_variables() | |
_,D2,theta_d=mlp(G) | |
obj_d=tf.reduce_mean(tf.log(1e-10+D1)+tf.log(1e-10+1-D2)) | |
obj_g=tf.reduce_mean(tf.log(1e-10+1-D2)) | |
opt_d=optimizer(-obj_d,theta_d) | |
opt_g=optimizer(obj_g,theta_g) | |
sess=tf.Session() | |
sess.run(tf.initialize_all_variables()) | |
TRAIN_ITERS = 10000 | |
BATCH_SIZE = 50 | |
histd, histg= np.zeros(TRAIN_ITERS), np.zeros(TRAIN_ITERS) | |
for i in range(TRAIN_ITERS): | |
for j in range(1): | |
x=np.random.normal(mu,sigma,BATCH_SIZE) | |
z=np.random.random(BATCH_SIZE*latent_dim) | |
histd[i],_=sess.run([obj_d,opt_d], {x_node: np.reshape(x,(BATCH_SIZE,1)), z_node: np.reshape(z,(BATCH_SIZE,latent_dim))}) | |
z=np.random.random(BATCH_SIZE*latent_dim) | |
histg[i],_=sess.run([obj_g,opt_g], {z_node: np.reshape(z,(BATCH_SIZE,latent_dim))}) | |
if i % 100 == 0: | |
print i, histd[i], histg[i] | |
z=np.random.random(10000*latent_dim) | |
x=sess.run(G, {z_node: np.reshape(z,(10000,latent_dim))}) | |
plt.hist(x, bins=50, normed=True) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment