Last active
March 10, 2023 06:36
-
-
Save tomonori-masui/0288859a553a1e200bb865d7fd8a67b3 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| from sklearn.metrics import mean_absolute_error | |
| from sklearn.metrics import mean_absolute_percentage_error | |
| def plot_forecast(series_train, series_test, forecast, forecast_int=None): | |
| mae = mean_absolute_error(series_test, forecast) | |
| mape = mean_absolute_percentage_error(series_test, forecast) | |
| plt.figure(figsize=(12, 6)) | |
| plt.title(f"MAE: {mae:.2f}, MAPE: {mape:.3f}", size=18) | |
| series_train.plot(label="train", color="b") | |
| series_test.plot(label="test", color="g") | |
| forecast.index = series_test.index | |
| forecast.plot(label="forecast", color="r") | |
| if forecast_int is not None: | |
| plt.fill_between( | |
| series_test.index, | |
| forecast_int["lower"], | |
| forecast_int["upper"], | |
| alpha=0.2, | |
| color="dimgray", | |
| ) | |
| plt.legend(prop={"size": 16}) | |
| plt.show() | |
| return mae, mape | |
| fh = np.arange(test_len) + 1 | |
| forecast = forecaster.predict(fh=fh) | |
| coverage = 0.9 # confidence interval | |
| forecast_int = forecaster.predict_interval(fh=fh, coverage=coverage)['Coverage'][coverage] | |
| sun_arima_mae, sun_arima_mape = plot_forecast( | |
| sun_train, sun_test, forecast, forecast_int | |
| ) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment