Last active
September 11, 2024 10:44
-
-
Save tompng/48762d63c10d5406dc52440afaaeef0d to your computer and use it in GitHub Desktop.
Tree rendering
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
require 'chunky_png' | |
case ARGV[0] | |
when 'red' | |
FLOOR_COLOR = [0xff, 0x80, 0x80] | |
LEAF_COLOR = 0xff0044 | |
TRUNK_COLOR = 0xff8888 | |
RAY_COLOR = [2, 1, 1] | |
LIGHT_THETA = 0.1 | |
when 'green' | |
FLOOR_COLOR = [0x80, 0x80, 0x80] | |
LEAF_COLOR = 0x44ff44 | |
TRUNK_COLOR = 0x888888 | |
RAY_COLOR = [1, 1, 1] | |
LIGHT_THETA = 1.2 | |
when 'blue' | |
FLOOR_COLOR = [0x80, 0x80, 0xa0] | |
LEAF_COLOR = 0x44ffaa | |
TRUNK_COLOR = 0x8888aa | |
RAY_COLOR = [1, 1, 2] | |
LIGHT_THETA = 2.6 | |
else | |
puts "Usage: ruby #{__FILE__} red|green|blue" | |
exit | |
end | |
class Canvas | |
def initialize(size) | |
@size = size | |
@color = size.times.map { [0] * @size } | |
@depth = size.times.map { [10] * @size } | |
@lightnorm = size.times.map { [0] * @size } | |
@cz = Math.cos(0.2) | |
@sz = Math.sin(0.2) | |
@cl = Math.cos(LIGHT_THETA) | |
@sl = Math.sin(LIGHT_THETA) | |
@shadow_size = 64 | |
@shadow = @shadow_size.times.map do | |
@shadow_size.times.map { [0] * @shadow_size } | |
end | |
end | |
def add_shadow(x, y, z, r, value = 1) | |
y, z = y * @cz - z * @sz, z * @cz + y * @sz | |
x, z = x * @cl + z * @sl, z * @cl - x * @sl | |
r = 2 * (r * @shadow_size / 2) | |
r = [r, 2].max | |
x = @shadow_size * (1 + x) / 2 | |
y = @shadow_size * (1 + y) / 2 | |
z = @shadow_size * (1 + z) / 2 | |
xrange = [(x - r).ceil, 0].max..[(x + r).floor, @shadow_size - 1].min | |
yrange = [(y - r).ceil, 0].max..[(y + r).floor, @shadow_size - 1].min | |
zrange = [(z - r).ceil, 0].max..[(z + r).floor, @shadow_size - 1].min | |
xrange.each do |ix| | |
yrange.each do |iy| | |
zrange.each do |iz| | |
v = 1 - ((ix - x) ** 2 + (iy - y) ** 2 + (iz - z) ** 2) / r / r | |
if v > 0 | |
@shadow[ix][iy][iz] += v ** 2 * value | |
end | |
end | |
end | |
end | |
end | |
def get_shadow(x, y, z) | |
y, z = y * @cz - z * @sz, z * @cz + y * @sz | |
x, z = x * @cl + z * @sl, z * @cl - x * @sl | |
interpolate3(@shadow, x, y, z) | |
end | |
def interpolate3(sh, x, y, z) | |
x = (@shadow_size * (1 + x) / 2).clamp(0, @shadow_size - 1) | |
y = (@shadow_size * (1 + y) / 2).clamp(0, @shadow_size - 1) | |
z = (@shadow_size * (1 + z) / 2).clamp(0, @shadow_size - 1) | |
ix = [x.floor, @shadow_size - 2].min | |
iy = [y.floor, @shadow_size - 2].min | |
iz = [z.floor, @shadow_size - 2].min | |
x -= ix | |
y -= iy | |
z -= iz | |
(1 - x) * (1 - y) * (1 - z) * sh[ix][iy][iz] + | |
x * (1 - y) * (1 - z) * sh[ix + 1][iy][iz] + | |
(1 - x) * y * (1 - z) * sh[ix][iy + 1][iz] + | |
x * y * (1 - z) * sh[ix + 1][iy + 1][iz] + | |
(1 - x) * (1 - y) * z * sh[ix][iy][iz + 1] + | |
x * (1 - y) * z * sh[ix + 1][iy][iz + 1] + | |
(1 - x) * y * z * sh[ix][iy + 1][iz + 1] + | |
x * y * z * sh[ix + 1][iy + 1][iz + 1] | |
end | |
def convert_shadow | |
@shadow_size.times do |y| | |
@shadow_size.times do |z| | |
r = (2.0 * y / (@shadow_size - 1) - 1) ** 2 + (2.0 * z / (@shadow_size - 1) - 1) ** 2 | |
light = r > 1 ? 0 : [(1 - r) ** 2, 1].min | |
@shadow_size.times.reverse_each do |x| | |
light *= 0.999 ** @shadow[x][y][z] | |
@shadow[x][y][z] = light | |
end | |
end | |
end | |
@ray = @shadow_size.times.map do | |
@shadow_size.times.map { [0] * @shadow_size } | |
end | |
@shadow_size.times do |x| | |
@shadow_size.times do |z| | |
sum = 0 | |
@shadow_size.times.each do |y| | |
sum += @shadow[x][y][z] * 0.5 ** (y.fdiv @shadow_size) | |
@ray[x][y][z] = sum | |
end | |
end | |
end | |
end | |
def draw(cx, cy, cz, cr, color, opacity = 1) | |
add_shadow(cx, cy, cz, cr, opacity) | |
cy, cz = cy * @cz - cz * @sz, cy * @sz + cz * @cz | |
x = @size * (1 + cx) / 2.0 | |
y = @size * (1 - cz) / 2.0 | |
r = cr * @size / 2.0 | |
depth = cy | |
yrange = [(y - r).ceil, 0].max..[(y + r).floor, @size - 1].min | |
xrange = [(x - r).ceil, 0].max..[(x + r).floor, @size - 1].min | |
xrange.each do |px| | |
yrange.each do |py| | |
d2 = r * r - (px - x) ** 2 - (py - y) ** 2 | |
if d2 > 0 && (d = depth - Math.sqrt(d2) / @size) < @depth[px][py] | |
@depth[px][py] = d | |
@color[px][py] = color | |
@lightnorm[px][py] = (px - x) / r * @cl + (y - py) / r * @sl | |
end | |
end | |
end | |
end | |
def get_screen_shadow(sx, sy, depth) | |
x = 2.0 * sx / @size - 1 | |
z = 1 - 2.0 * sy / @size | |
y = depth | |
y, z = y * @cz + z * @sz, -y * @sz + z * @cz | |
get_shadow(x, y, z) | |
end | |
def get_screen_ray(sx, sy, depth) | |
x = 2.0 * sx / @size - 1 | |
z = 1 - 2.0 * sy / @size | |
y = depth | |
x, z = x * @cl + z * @sl, z * @cl - x * @sl | |
interpolate3(@ray, x, y, z) | |
end | |
def save(file) | |
image = ChunkyPNG::Image.new(@size, @size) | |
@size.times do |x| | |
@size.times do |y| | |
d = @depth[x][y] | |
c = @color[x][y] | |
col = [(c >> 16) & 0xff, c >> 8 & 0xff, c & 0xff] | |
floor_z = -0.5 | |
floor_depth = ((1 - 2.0 * y / @size) * @cz - floor_z) / @sz | |
if floor_depth < d | |
d = floor_depth | |
col = FLOOR_COLOR | |
@lightnorm[x][y] = 0 | |
end | |
ray = get_screen_ray(x, y, d) | |
shadow = 0.1 + 0.9 * get_screen_shadow(x, y, d) | |
shade = 0.7 + 0.3 * @lightnorm[x][y] | |
r, g, b = col.zip(RAY_COLOR).map { (_1 * shadow * shade + _2 * ray).round.clamp(0, 0xff) } | |
image[x, y] = (r << 24) | (g << 16) | (b << 8) | 0xff | |
end | |
end | |
image.save(file) | |
end | |
end | |
canvas = Canvas.new(1024) | |
def sphere_rand | |
while true | |
x = 2 * rand - 1 | |
y = 2 * rand - 1 | |
z = 2 * rand - 1 | |
r = x * x + y * y + z * z | |
return [x / r, y / r, z / r] if r < 1 | |
end | |
end | |
draw_tree = ->(x, y, z, w, dx, dy, dz, t) { | |
r = w * 0.03 | |
if w < 0.05 | |
10.times do | |
sx, sy, sz = sphere_rand | |
l = 0.02 | |
canvas.draw(x + l * (dx + sx), y + l * (dy + sy), z + l * (dz + sz), l / 4, LEAF_COLOR) | |
end | |
return | |
end | |
if t < 0 | |
sx, sy, sz = sphere_rand | |
[-1, 1].each do |dir| | |
dx2 = dx + sx / 2 * dir | |
dy2 = dy + sy / 2 * dir | |
dz2 = dz + sz / 2 * dir | |
dl = Math.sqrt(dx2 * dx2 + dy2 * dy2 + dz2 * dz2) | |
w2 = w * (0.7 + 0.3 * rand) | |
draw_tree.call(x, y, z, w2, dx2 / dl, dy2 / dl, dz2 / dl, (w < 0.2 ? 0.2 : 1) * rand) | |
end | |
else | |
5.times do |i| | |
canvas.draw(x + r * dx * i / 4, y + r * dy * i / 4, z + r * dz * i / 4, r, TRUNK_COLOR, 1 + 40 * w) | |
end | |
x += dx * r | |
y += dy * r | |
z += dz * r | |
sx, sy, sz = sphere_rand | |
dx += sx / 10 | |
dy += sy / 10 | |
dz += sz / 10 + w / 20.0 | |
dl = Math.sqrt(dx * dx + dy * dy + dz * dz) | |
draw_tree.call(x, y, z, w * 0.99, dx / dl, dy / dl, dz / dl, t - 0.1 * w) | |
end | |
} | |
srand 0 | |
draw_tree.call(0, 0, -0.5, 1, 0, 0, 1, 1) | |
canvas.convert_shadow | |
canvas.save 'tree.png' |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment