Last active
August 22, 2018 21:29
-
-
Save tompollard/d4c216d0c4ad30481c99 to your computer and use it in GitHub Desktop.
Compute the Oxford Severity of Illness Score (OASIS)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# The MIT License | |
# Copyright (c) 2015 Tom Pollard | |
# Permission is hereby granted, free of charge, to any person obtaining a copy | |
# of this software and associated documentation files (the "Software"), to deal | |
# in the Software without restriction, including without limitation the rights | |
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
# copies of the Software, and to permit persons to whom the Software is | |
# furnished to do so, subject to the following conditions: | |
# The above copyright notice and this permission notice shall be included in | |
# all copies or substantial portions of the Software. | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | |
# THE SOFTWARE. | |
def compute_oasis(pd_dataframe): | |
""" | |
Takes Pandas DataFrame as an argument and computes Oxford Acute | |
Severity of Illness Score (OASIS) (http://oasisicu.com/) | |
The DataFrame should include only measurements taken over the first 24h | |
from admission. pd_dataframe should contain the following columns: | |
'prelos' => Pre-ICU length of stay, hours | |
'age' => Age of patient, years | |
'GCS_total' => Total Glasgow Coma Scale for patient | |
'hrate' => All heart rate measurements | |
'MAP' => All mean arterial blood pressure measurements | |
'resp_rate' => All respiratory rate measurements | |
'temp_c' => All temperature measurements, C | |
'urine' => Total urine output over 24 h (note, not consecutive measurements) | |
'ventilated' => Is patient ventilated? (y,n) | |
'admission_type' => Type of admission (elective, urgent, emergency) | |
Reference: | |
Johnson AE, Kramer AA, Clifford GD. A new severity of illness scale | |
using a subset of Acute Physiology And Chronic Health Evaluation | |
data elements shows comparable predictive accuracy. | |
Crit Care Med. 2013 Jul;41(7):1711-8. doi: 10.1097/CCM.0b013e31828a24fe | |
http://www.ncbi.nlm.nih.gov/pubmed/23660729 | |
""" | |
# 10 variables | |
oasis_score, oasis_prelos, oasis_age, oasis_gcs, oasis_hr, oasis_map, oasis_resp, \ | |
oasis_temp, oasis_urine, oasis_vent, oasis_surg = 0,0,0,0,0,0,0,0,0,0,0 | |
# Pre-ICU length of stay, hours | |
for val in pd_dataframe['prelos']: | |
if val >= 4.95 and val <= 24.0: | |
oasis_prelos = np.nanmax([0,oasis_prelos]) | |
elif val > 311.8: | |
oasis_prelos = np.nanmax([1,oasis_prelos]) | |
elif val > 24.0 and val <= 311.8: | |
oasis_prelos = np.nanmax([2,oasis_prelos]) | |
elif val >= 0.17 and val < 4.95: | |
oasis_prelos = np.nanmax([3,oasis_prelos]) | |
elif val < 0.17: | |
oasis_prelos = np.nanmax([5,oasis_prelos]) | |
else: | |
oasis_prelos = np.nanmax([np.nan,oasis_prelos]) | |
if pd_dataframe['prelos'].isnull().all(): | |
oasis_prelos = np.nan | |
# Age, years | |
for val in pd_dataframe['age']: | |
if val < 24: | |
oasis_age = np.nanmax([0,oasis_age]) | |
elif val >= 24 and val <= 53: | |
oasis_age = np.nanmax([3,oasis_age]) | |
elif val > 53 and val <= 77: | |
oasis_age = np.nanmax([6,oasis_age]) | |
elif val > 77 and val <= 89: | |
oasis_age = np.nanmax([9,oasis_age]) | |
elif val > 89: | |
oasis_age = np.nanmax([7,oasis_age]) | |
else: | |
oasis_age = np.nanmax([np.nan,oasis_age]) | |
if pd_dataframe['age'].isnull().all(): | |
oasis_age = np.nan | |
# Glasgow Coma Scale | |
for val in pd_dataframe['GCS_total']: | |
if val == 15: | |
oasis_gcs = np.nanmax([0,oasis_gcs]) | |
elif val == 14: | |
oasis_gcs = np.nanmax([3,oasis_gcs]) | |
elif val >= 8 and val <= 13: | |
oasis_gcs = np.nanmax([4,oasis_gcs]) | |
elif val >= 3 and val <= 7: | |
oasis_gcs = np.nanmax([10,oasis_gcs]) | |
else: | |
oasis_gcs = np.nanmax([np.nan,oasis_gcs]) | |
if pd_dataframe['GCS_total'].isnull().all(): | |
oasis_gcs = np.nan | |
# Heart rate | |
for val in pd_dataframe['hrate']: | |
if val >= 33 and val <= 88: | |
oasis_hr = np.nanmax([0,oasis_hr]) | |
elif val > 88 and val <= 106: | |
oasis_hr = np.nanmax([1,oasis_hr]) | |
elif val > 106 and val <= 125: | |
oasis_hr = np.nanmax([3,oasis_hr]) | |
elif val < 33: | |
oasis_hr = np.nanmax([4,oasis_hr]) | |
elif val > 125: | |
oasis_hr = np.nanmax([6,oasis_hr]) | |
else: | |
oasis_hr = np.nanmax([np.nan,oasis_hr]) | |
if pd_dataframe['hrate'].isnull().all(): | |
oasis_hr = np.nan | |
# Mean arterial pressure | |
for val in pd_dataframe['MAP']: | |
if val >=61.33 and val <= 143.44: | |
oasis_map = np.nanmax([0,oasis_map]) | |
elif val >= 51.0 and val < 61.33: | |
oasis_map = np.nanmax([2,oasis_map]) | |
elif (val >= 20.65 and val < 51.0) or (val > 143.44): | |
oasis_map = np.nanmax([3,oasis_map]) | |
elif val < 20.65: | |
oasis_map = np.nanmax([4,oasis_map]) | |
else: | |
oasis_map = np.nanmax([np.nan,oasis_map]) | |
if pd_dataframe['MAP'].isnull().all(): | |
oasis_map = np.nan | |
# Respiratory Rate | |
for val in pd_dataframe['resp_rate']: | |
if val >=13 and val <= 22: | |
oasis_resp = np.nanmax([0,oasis_resp]) | |
elif (val >= 6 and val <= 12) or (val >= 23 and val <= 30): | |
oasis_resp = np.nanmax([1,oasis_resp]) | |
elif val > 30 and val <= 44: | |
oasis_resp = np.nanmax([6,oasis_resp]) | |
elif val > 44: | |
oasis_resp = np.nanmax([9,oasis_resp]) | |
elif val < 6: | |
oasis_resp = np.nanmax([10,oasis_resp]) | |
else: | |
oasis_resp = np.nanmax([np.nan,oasis_resp]) | |
if pd_dataframe['resp_rate'].isnull().all(): | |
oasis_resp = np.nan | |
# Temperature, C | |
for val in pd_dataframe['temp_c']: | |
if val >= 36.40 and val <= 36.88: | |
oasis_temp = np.nanmax([0,oasis_temp]) | |
elif (val >= 35.94 and val < 36.40) or (val > 36.88 and val <= 39.88): | |
oasis_temp = np.nanmax([2,oasis_temp]) | |
elif val < 33.22: | |
oasis_temp = np.nanmax([3,oasis_temp]) | |
elif val >= 33.22 and val < 35.94: | |
oasis_temp = np.nanmax([4,oasis_temp]) | |
elif val > 39.88: | |
oasis_temp = np.nanmax([6,oasis_temp]) | |
else: | |
oasis_temp = np.nanmax([np.nan,oasis_temp]) | |
if pd_dataframe['temp_c'].isnull().all(): | |
oasis_temp = np.nan | |
# Urine output, cc/day (total over 24h) | |
val = np.max(pd_dataframe['urine']) | |
if val >=2544.0 and val <= 6896.0: | |
oasis_urine = np.nanmax([0,oasis_urine]) | |
elif val >= 1427.0 and val < 2544.0: | |
oasis_urine = np.nanmax([1,oasis_urine]) | |
elif val >= 671.0 and val < 1427.0: | |
oasis_urine = np.nanmax([5,oasis_urine]) | |
elif val > 6896.0: | |
oasis_urine = np.nanmax([8,oasis_urine]) | |
elif val < 671: | |
oasis_urine = np.nanmax([10,oasis_urine]) | |
else: | |
oasis_urine = np.nanmax([np.nan,oasis_urine]) | |
if pd_dataframe['urine'].isnull().all(): | |
oasis_urine = np.nan | |
# Ventilated y/n | |
for val in pd_dataframe['ventilated']: | |
if val == 'n': | |
oasis_vent = np.nanmax([0,oasis_vent]) | |
elif val == 'y': | |
oasis_vent = np.nanmax([9,oasis_vent]) | |
else: | |
oasis_vent = np.nanmax([np.nan,oasis_vent]) | |
if pd_dataframe['ventilated'].isnull().all(): | |
oasis_vent = np.nan | |
# Elective surgery y/n | |
for val in pd_dataframe['admission_type']: | |
if val == 'elective': | |
oasis_surg = np.nanmax([0,oasis_surg]) | |
elif val in ['urgent','emergency']: | |
oasis_surg = np.nanmax([6,oasis_surg]) | |
else: | |
oasis_surg = np.nanmax([np.nan,oasis_surg]) | |
if pd_dataframe['admission_type'].isnull().all(): | |
oasis_surg = np.nan | |
# Return sum | |
oasis_score = sum([oasis_prelos, oasis_age, oasis_gcs, oasis_hr, oasis_map, oasis_resp, \ | |
oasis_temp, oasis_urine, oasis_vent, oasis_surg]) | |
return oasis_score |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment