Skip to content

Instantly share code, notes, and snippets.

@tomron
Created November 21, 2024 19:07
Show Gist options
  • Save tomron/dffae6ca7c679094894159b26b1d4d6f to your computer and use it in GitHub Desktop.
Save tomron/dffae6ca7c679094894159b26b1d4d6f to your computer and use it in GitHub Desktop.
Bar Chart based on Storytelling With Data - better bar chart visualization
from typing import Any
import pandas as pd
import plotly.graph_objects as go
import pandas as pd
def barchart(
df: pd.DataFrame, x_col: str, y_col: str,
title: str | None = None,
latent_color : str = 'gray',
prominent_color: str = 'orange',
prominent_value: Any | None = None,
**kwargs: dict,
) -> go.Figure:
"""_summary_
Args:
df (pd.DataFrame): Dataframe to plot
x_col (str): Name of x coloumn
y_col (str): Name of y coloumn
title (str | None, optional): Chart title. Defaults to None.
latent_color (str, optional): Color to use for the values we don't want to highlight. Defaults to 'gray'.
prominent_color (str, optional): Color to use for the value we want to highlight. Defaults to 'orange'.
prominent_value (Any | None, optional): Value of the category we want to highlight. Defaults to None.
Returns:
go.Figure: Plotly figure object
"""
colors = (df[x_col] == prominent_value).replace(False, latent_color).replace(True, prominent_color).to_list()
fig = go.Figure(data=[
go.Bar(
x=df[x_col],
y=df[y_col],
marker_color=colors
)],
layout=go.Layout(
title=title,
xaxis=dict(title=x_col, showgrid=False),
yaxis=dict(title=y_col, showgrid=False),
plot_bgcolor='white',
paper_bgcolor='white'
)
)
fig.update_layout(**kwargs)
return fig
if __name__ == "__main__":
data = {'categories': ['A', 'B', 'C', 'D', 'E'],
'values': [23, 45, 56, 78, 90]}
df = pd.DataFrame(data)
fig = barchart(df, 'categories', 'values', prominent_value='C', title='My Chart', yaxis_showgrid=True)
fig.show()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment