Last active
August 15, 2021 06:57
-
-
Save tomron/fa56ae15723b862d2d93a49b74c831a9 to your computer and use it in GitHub Desktop.
How to deal with non trivial missing values when using pandas read_csv
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pandas as pd | |
import numpy as np | |
import time | |
url = "http://archive.ics.uci.edu/ml/machine-learning-databases/mammographic-masses/mammographic_masses.data" | |
names = ['BI-RADS', 'Age', 'Shape', 'Margin', 'Density', 'Severity'] | |
def manual_convert(): | |
df = pd.read_csv(url, names=names) | |
df = df.replace('?', np.NAN) | |
df.loc[:, names[:-1]] = df.loc[:, names[:-1]].apply(pd.to_numeric) | |
def use_na_values(): | |
df = pd.read_csv(url, names=names, na_values=["?"]) | |
def use_converters(): | |
df = pd.read_csv( | |
url, | |
names=names, | |
converters={"BI-RADS": lambda x: x if x != "?" else np.NAN} | |
) | |
def repeat(func, n=10): | |
times = [] | |
for _ in range(n): | |
start = time.time() | |
func() | |
end = time.time() | |
times.append(end-start) | |
return sum(times)/len(times) | |
n = 100 | |
print("manual_convert", repeat(manual_convert, n)) | |
print("use_na_values", repeat(use_na_values, n)) | |
print("use_converters", repeat(use_converters, n)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment