Created
July 13, 2016 12:27
-
-
Save tomrunia/b2da1c31f3dc3f139a47b02567e25098 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import os | |
import sys | |
import pickle | |
import numpy as np | |
import tensorflow as tf | |
from tensorflow.python.summary.event_accumulator import EventAccumulator | |
event_file = "/home/trunia1/dev/python/LSTMCounting/output/screens/" \ | |
"summaries/004_rmsprop_0.0005_lstm_512x2_grad_10_batch_128_dropkp_0.75/" \ | |
"events.out.tfevents.1468336776.DTA16004" | |
size_guidance = { | |
'compressedHistograms': 1, | |
'images': 1, | |
'audio': 1, | |
'scalars': 10000, | |
'histograms': 1, | |
} | |
event_acc = EventAccumulator(event_file, size_guidance=size_guidance) | |
event_acc.Reload() | |
tags = event_acc.Tags() | |
print(tags) | |
tags_to_save = [ | |
"loss/total", | |
"loss/classification", | |
"loss/attention_explore", | |
"loss/attention_smooth", | |
"loss/weight_decay", | |
"train/abs_error", | |
"train/examples_per_second", | |
"train/learning_rate", | |
"train/mse_error", | |
"train/predictions_non_zero", | |
"validation/loss", | |
"validation/mse_error" | |
] | |
output_dir = os.path.join(os.path.dirname(event_file), "scalar_events") | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
for tag in tags_to_save: | |
if tag not in tags['scalars']: | |
print("Skipping tag '%s' because no events founds in file." % tag) | |
continue | |
print("Exporting events for tag '%s'..." % tag) | |
# ScalarEvent(wall_time=double, step=1L, value=double) | |
events = event_acc.Scalars(tag) | |
data = np.zeros([len(events), 2], dtype=np.float32) | |
for step in range(len(events)): | |
data[step, 0] = float(events[step].step) | |
data[step, 1] = float(events[step].value) | |
#print(data[step,]) | |
output_file = os.path.join(output_dir, tag.replace('/', '_') + ".pickle") | |
pickle.dump(data, open(output_file, 'w')) | |
print("Done.") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment